通吕运河水利枢纽工程贯流泵装置模型试验分析

杨建峰 王铁力 张一祁 周亚军 杨帆

PDF(4278 KB)
中国农村水利水电 ›› 2020 ›› (12) : 167-171.
供水工程

通吕运河水利枢纽工程贯流泵装置模型试验分析

  • 杨建峰1,王铁力2,张一祁3,周亚军2,杨帆3
作者信息 +

Research on the Tubular Pump Device of Tonglv Canal Project

  • YANG Jian-feng1 ,WANG Tie-li 2 ,ZHANG Yi-qi 3 ,ZHOU Ya-jun2 ,YANG Fan3
Author information +
稿件信息 +

摘要

为检验通吕运河水利枢纽工程贯流泵机组泵装置的水力特性,对竖井贯流泵装置开展了能量特性试验、空化特性试验、飞逸特性试验,获得了叶片安放角0°、±2°和±4°下的试验结果。结果表明:各叶片角度下,在正常运行扬程范围内竖井贯流泵装置模型运行平稳,无明显不良噪音和振动;在叶片角度0°下,设计扬程1.98 m时,临界空化余量约为4.05 m;最大扬程3.70 m时,临界空化余量约为6.29 m;在扬程1.98~3.70 m内,临界空化余量均满足运行要求;叶片安放角度为-4°,扬程为3.30 m时,泵装置的最高效率达到79.03%;竖井贯流泵装置单位飞逸转速随叶片角度减小而增大;在叶片角度0°,最大扬程3.70 m时,最大飞逸转速为水泵机组额定转速的2.13倍。

Abstract

In order to test the hydraulic characteristics of the pump unit of the Tonglv Canal Water Conservancy Project, the energy characteristics test, cavitation characteristic test, flight characteristics test and test of the shaft tubular pump device are carried out. The results show that: at various blade angles, the model of the shaft cross-flow pump device runs smoothly within the normal operating head range, without obvious bad noise and vibration; at a blade angle of 0°, the critical head cavitation margin is about 1.98 m. At a maximum head of 3.70 m, the critical cavitation margin is approximately 6.29 m; within a head of 1.98 m to 3.70 m, the critical cavitation margin meets the operating requirements; the blade placement angle is -4° and the head is 3.30 m; At the time, the maximum efficiency of the pump device reached 79.03%; the unit flying speed of the shaft cross-flow pump device increases as the blade angle decreases; when the blade angle is 0° and the maximum head is 3.70 m, the maximum flying speed is the rated speed of the pump unit 2.13 times.

关键词

通吕河泵站 / 竖井贯流泵 / 泵装置 / 模型试验

Key words

Tonglv River Pumping Station / shaft-tubular pump / pump device / model test

基金

国家自然科学基金项目

引用本文

导出引用
杨建峰 王铁力 张一祁 周亚军 杨帆. 通吕运河水利枢纽工程贯流泵装置模型试验分析[J].中国农村水利水电, 2020(12): 167-171
YANG Jian-feng, WANG Tie-li, ZHANG Yi-qi, ZHOU Ya-jun, YANG Fan. Research on the Tubular Pump Device of Tonglv Canal Project[J].China Rural Water and Hydropower, 2020(12): 167-171

参考文献

[1]龙俊,王豹,高亮,等.石港泵站立式轴流泵装置模型试验研究[J].江苏水利,2017(2):12-16.
[2]谢伟东,蒋小欣,刘铭峰,等.竖井式贯流泵装置设计[J].排灌机械,2005(1):10-12.
[3]夏烨,汤方平,石丽建,等.双向竖井贯流泵装置数值模拟及试验分析[J].中国农村水利水电,2017(7):149-153.
[4]陈会向,周大庆,张蓝国,等.基于CFD的双向竖井贯流泵装置水力性能数值模拟[J].水电能源科学,2013,31(11):183-187.
[5]谢荣盛,吴忠,何勇,等.双向竖井贯流泵进出水流道优化研究[J].农业机械学报,2015,46(10):68-74.
[6]杨帆,刘超,汤方平,等.竖井贯流泵装置内部流动数值模拟与性能分析[J].水力发电学报,2014,33(1):178-184.
[7]杨帆,刘超,汤方平,等.竖井型线演变及对泵装置水力性能的影响分析[J].应用基础与工程科学学报,2014,22(1):129-138.
[8]朱红耕,戴龙洋,张仁田,等.新型竖井贯流泵装置研发与数值分析[J].排灌机械工程学报,2011,29(5):418-422.
[9]孟凡,裴吉,李彦军,等.导叶位置对双向竖井贯流泵装置水力性能的影响[J].农业机械学报,2017,48(2):135-140.
[10]ZHU Honggeng, DAI Longyang, ZHANG Rentian, et al. Numerical analysis of the internal flow of a new-type shaft tubular pumping system[C]∥Proceeding of ASME-JSME-KSME Joint Fluids Engineering Conference, 2011, AJK2011-FED, July24-29, 2011, Hamamatsu, Shizuoka, Japan.
[11]戴景,戴启璠.南水北调东线淮安二站泵装置模型试验研究[J].人民长江,2016,47(12):95-98,103.
[12]孙丹丹,陈世杰,王斌,等.睢宁县凌城泵站轴流泵装置模型试验[J].中国农村水利水电,2018(2):126-130.
[13]陈加琦,朱泉荣,苏志敏,等.基于特征尺寸规则化的竖井贯流泵装置研究[J].水力发电学报,2019,38(2):101-111.
[14]陈松山,颜红勤,周正富,等.泵站前置竖井进水流道三维湍流数值模拟与模型试验[J].农业工程学报,2014,30(2):63-71.
[15]陈会向,周大庆,张蓝国,等.基于CFD的双向竖井贯流泵装置水力性能数值模拟[J].水电能源科学,2013,31(11):183-187.
[16]关醒凡,鲁涛.带导叶大型涡壳式泵模型设计与试验研究[J].水泵技术,2019(5):6-9,14.
[17]王铁力,刘斌,苏叶平,等.通吕河泵站的泵装置方案比选分析[J].浙江水利科技,2019,47(5):1-4.
[18]宿鸿. 海河口泵站工程的水力机械设计及应用研究[D]. 天津:天津大学,2016.
[19]梁金栋,陆林广,徐磊,等.低扬程立式泵装置流道优化及模型试验研究[J].灌溉排水学报,2011,30(6):73-76.
PDF(4278 KB)

访问

引用

详细情况

段落导航
相关文章

/