考虑二阶发电机模型的非线性水轮机调节系统动力学分析

曹林宁 吴道科 李兵 张赫

PDF(2300 KB)
中国农村水利水电 ›› 2020 ›› (12) : 201-205.
水电建设

考虑二阶发电机模型的非线性水轮机调节系统动力学分析

  • 曹林宁1,吴道科1,李兵2,张赫2
作者信息 +

A Dynamic Analysis of Nonlinear Turbine Control System Considering Second-Order Generator Model

  • CAO Lin-ning1 ,WU Dao-ke1 ,LI Bing2 ,ZHANG He2
Author information +
稿件信息 +

摘要

水轮机调节系统是一种复杂的非线性非最小相位系统,为了深入研究其调节规律,在考虑水轮机非线性和弹性水击的基础上,引入二阶发电机动态模型并忽略系统频率扰动,提出了一种新的水-机-电联合非线性模型。以调速器PID参数为控制参数,通过六维自治系统Hopf分岔直接判据对该模型进行理论分析,得到了该非线性系统的稳定域。并结合分岔图、时域响应图和系统相轨迹图分析了不同调速器参数时系统拓扑结构的变化,结果表明:当调速器参数远离分岔点时,系统能够快速收敛与稳定,这为非线性水轮机调节系统控制参数的整定及其安全稳定运行提供了理论依据。

Abstract

Hydraulic turbine governing system is a complex non-linear non-minimum phase system. In order to study its governing law thoroughly, this paper introduces a second-order generator dynamic model and ignores the frequency disturbance of the system based on the consideration of the non-linearity and elastic water hammer of the turbine and the non-linearity of the generator set.- Nonlinear model of mechanical-electrical combination. Taking PID parameters of governor as control parameters, the model is theoretically analyzed by direct criterion of Hopf bifurcation of six-dimensional autonomous system, and the stability region of the nonlinear system is obtained. Based on the bifurcation diagram, time domain response diagram and system trajectory diagram, the changes of the system topology structure with different governor parameters are analyzed. The results show that when the governor parameters are far away from the bifurcation point, the system can quickly converge and stabilize, which provides a theoretical basis for the setting of the control parameters and the safe and stable operation of the nonlinear turbine governing system.

关键词

水轮机调节系统 / 非线性 / PID参数 / Hopf分岔 / 混沌分析

Key words

hydraulic turbine regulating system / nonlinear / PID parameter / bifurcation / chaos analysis

引用本文

导出引用
曹林宁 吴道科 李兵 张赫. 考虑二阶发电机模型的非线性水轮机调节系统动力学分析[J].中国农村水利水电, 2020(12): 201-205
CAO Lin-ning, WU Dao-ke, LI Bing, ZHANG He. A Dynamic Analysis of Nonlinear Turbine Control System Considering Second-Order Generator Model[J].China Rural Water and Hydropower, 2020(12): 201-205

参考文献

[1]沈祖饴. 水轮机调速系统[M].北京: 中国水利水电出版社, 1998.
[2]沈祖饴. 水轮机调速系统分析[M].北京: 中国水利水电出版社, 1996.
[3]许贝贝, 陈帝伊, 张浩, 等. 随机转速波动下水轮机调节系统动力稳定性[J].振动与冲击, 2018,37(12):226-231.
[4]张浩. 水轮机调节系统动力学建模与稳定性分析[D].陕西杨凌:西北农林科技大学, 2016.
[5]宋墩文, 姜苏娜, 郝建红, 等. 电力系统低频振荡分岔和混沌机理述评[J].华东电力, 2014,42(6):1 115-1 123.
[6]唐梦雪. 电力系统低频振荡混沌机理与混沌控制研究[D].成都:西南交通大学, 2018.
[7]米昕禾. 基于分岔理论的电力系统电压稳定分析及控制策略研究[D].北京:华北电力大学, 2017.
[8]Hydraulic turbine and turbine control models for system dynamic studies[J].IEEE Transactions on Power Systems: A Publication of the Power Engineering Society, 1992,1(7):167-179.
[9]凌代俭, 沈祖诒. 水轮机调节系统的非线性模型、PID控制及其Hopf分叉[J].中国电机工程学报, 2005(10):97-102.
[10]凌代俭, 沈祖诒. 考虑饱和非线性环节的水轮机调节系统的分叉分析[J].水力发电学报, 2007(6):126-131.
[11]陈帝伊, 郑栋, 马孝义, 等. 混流式水轮机调节系统建模与非线性动力学分析[J].中国电机工程学报, 2012,32(32):116-123.
[12]把多铎, 袁璞, 陈帝伊, 等. 复杂管系水轮机调节系统非线性建模与分析[J].排灌机械工程学报, 2012,30(4):428-435.
[13]张醒, 张德虎, 刘莹莹. 基于分数阶模糊PID控制的水轮机调节系统[J].排灌机械工程学报, 2016,34(6):504-510.
[14]曹春建, 张德虎, 刘莹莹, 等. 基于改进粒子群算法的水轮机调节系统分数阶PI~λD~μ控制器设计[J].中国农村水利水电, 2013(11):96-101.
[15]郭文成, 杨建东, 王明疆. 基于Hopf分岔的变顶高尾水洞水电站水轮机调节系统稳定性研究[J]. 水利学报, 2016,47(2):189-199.
[16]王超, 张德虎, 唐兆祥. 非线性水轮机调节系统的Hopf分岔分析[J].水电能源科学, 2018,36(9):148-151.
[17]李继彬, 冯贝叶. 稳定性、分支与混沌[M].昆明: 云南科技出版社, 1995.
[18]凌代俭. 水轮机调节系统分岔与混沌特性的研究[D].南京:河海大学, 2007.
PDF(2300 KB)

392

访问

0

引用

详细情况

段落导航
相关文章

/