为了从动力学角度研究玄武岩纤维对土的加筋作用,将长为6 mm的玄武岩纤维分别按一定的质量比掺入黄土中,通过动三轴试验研究纤维含量、含水率以及固结围压对玄武岩纤维加筋土的动应力-应变关系、动弹性模量和阻尼比的影响。试验结果表明:①玄武岩纤维加筋土和无筋土的动应力-应变关系曲线可以用H-D双曲线模型拟合;②与无筋土相比,当动应变相同时玄武岩纤维加筋土的动应力增大;③提升固结围压或减小试样含水率均可增大玄武岩纤维加筋土的动弹性模量,但该模量受纤维含量的影响不明显;④可通过增加纤维含量,或在有效区间内增大含水率来增大玄武岩纤维加筋土的阻尼比。
Abstract
In order to study the dynamic constitutive characteristics of basalt fibre-reinforced loess, and analyze the reinforced mechanism from the dynamic point of view, the basalt fiber with a length of 6 mm was blended into the loess at different mass ratios. Dynamic tri-axial tests were conducted to study the effects of fiber content, moisture content and confining pressure on dynamic stress-strain relationship, dynamic elastic modulus and damping ratio of fiber loess. The test results show that:①The dynamic stress-strain relationship curves of fiber loess and unreinforced loess are strain hardening, which can be fitted by H-D hyperbolic model;②Compared with unreinforced loess, the dynamic stress of fiber loess increases with the same dynamic strain;③ Increasing the consolidation confining pressure or reducing the moisture content can increase the dynamic elastic modulus of fiber loess, but the dynamic elastic modulus is not significantly affected by the fiber content; ④The damping ratio of fiber loess can be increased by increasing the fiber content or increasing the water content in the effective interval.
关键词
玄武岩纤维加筋土 /
动应力-应变关系 /
动弹性模量 /
阻尼比 /
H-D模型
{{custom_keyword}} /
Key words
fiber loess /
dynamic stress-strain relationship /
dynamic elastic modulus /
damping ratio /
H-D model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]GULER Erol. A material which started a new era in geotechnical engineering: geosynthetics[J]. Innovative Infrastructure Solutions, 2017,2(1):36.
[2]何光春,周世良. 加筋土技术的应用及进展[J]. 土木建筑与环境工程,2001,23(5):11-15.
[3]包承纲,丁金华. 纤维加筋土的研究和工程应用[J]. 土工基础, 2012,26(1):80-83.
[4]刘宝生,唐朝生,李建, 等. 纤维加筋土工程性质研究进展[J]. 工程地质学报, 2013,21(4):540-547.
[5]高磊,胡国辉,陈永辉, 等. 玄武岩纤维加筋黏土三轴试验研究[J]. 岩土工程学报, 2016,39(s1):198-203.
[6]刘芳,孙红,葛修润. 玻璃玄武岩纤维加筋土的三轴试验研究[J]. 上海交通大学学报(自然版), 2011,45(5):762-766.
[7]刘寒冰,何岩,魏海斌, 等. 聚丙烯纤维改良粉煤灰土的动力特性[J]. 吉林大学学报(工学版), 2010,149(3):672-675.
[8]KIRAR Bablu, MAHESHWARI B K, JAKKA R S. Dynamic Properties of Solani Sand Reinforced with Coir Fibers[J]. World Conference on Earthquake Engineering, 2012.
[9]TANG Chao-sheng, SHI Bin, GAO Wei, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles & Geomembranes, 2007,25(3):194-202.(下转第223页)
[10]TANG Chao-sheng, SHI Bin, ZHAO Li-zheng. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles & Geomembranes, 2010,28(1):54-62.
[11]MIRMOHAMMAD SADEGHI Masoud, HASSAN BEIGI Farhad. Dynamic behavior of reinforced clayey sand under cyclic loading[J]. Geotextiles and Geomembranes, 2014,42(5):564-572.
[12]LI J, DING D W. Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading[J]. Soil Dynamics & Earthquake Engineering, 2002,22(9):977-983.
[13]GHIASSIAN H, SHAHNAZARI H, NOORZAD Ali. Nonlinear behavior of fine sand reinforced with carpet waste strips in undrained cyclic loading[J]. Kuwait Journal of Science and Engineering, 39(1B):15-36.
[14]钱叶琳,郭盼盼,王洁,等. 纤维加筋土的动力响应特性研究综述[J]. 土工基础, 2016(6):92-100.
[15]WANG Hai-liang, YANG Xin-lei, REN Quan-chang, et al. Research Progress Basalt Fiber in Civil Engineering[J]. Applied Mechanics and Materials, 2011(4):71-78.
[16]王德银,唐朝生,李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013,35(10):1 933-1 940.
[17]刘建龙,侯天顺,骆亚生. 棉纤维加筋土无侧限抗压强度试验研究[J]. 水力发电学报, 2018(2):1-11.
[18]骆亚生. 中国典型黄土动力特性及其参数的试验分析[D]. 西安: 西安理工大学, 2000.
[19]李胜男. 纤维加筋土的动力特性试验研究[D]. 陕西杨凌: 西北农林科技大学, 2019.
[20]HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils[J]. Journals of Soil Mechanics and Foundations, 1972,98(7):667-692.