不同水肥综合调控模式下水稻生长特征、水肥利用率及氮磷流失规律

刘路广, 陈扬, 吴瑕, 余乾安, 潘少斌, 杨小伟, 王敬, 王丽红

PDF(2723 KB)
中国农村水利水电 ›› 2020 ›› (12) : 67-72.
农田水利

不同水肥综合调控模式下水稻生长特征、水肥利用率及氮磷流失规律

  • 刘路广1,2,陈扬3,吴瑕1,2,余乾安4,潘少斌1,2,杨小伟1,2,王敬1,2,王丽红5
作者信息 +

Growth Characteristics of Rice,Water-fertilizer Utilization and Nitrogen and Phosphorus Loss Law Under Different Water-fertilizer Control Patterns

  • LIU Lu-guang1,2 ,CHEN Yang3 ,WU Xia1,2 ,YU Qian-an4 ,PAN Shao-bin1,2 , YANG Xiao-wei 1,2 ,WANG Jing1,2 ,WANG Li-hong5
Author information +
稿件信息 +

摘要

为进一步探明水稻生长与水分养分之间作用机制,充分发挥水肥耦合效应,在湖北省灌溉试验中心站开展了水肥综合调控模式试验研究。设置了常规淹灌模式(W0)、间歇灌溉模式(W1)、蓄雨型间歇灌溉模式(W2)3种灌溉模式;不施氮肥处理(N0)、当地实际施氮水平(N1)、当地施氮水平的75%(N2)3种施氮水平;基肥+一次追肥(F1)、基肥+二次追肥(F2)2种施肥方式。结果表明,与淹灌相比,间歇灌溉有利于水稻后期生长及高产,总氮排放负荷减少26%、总磷减少11%,氮肥利用率提高5.2%;与间歇灌溉相比,蓄雨型间歇灌溉会促进水稻全生育期生长,但后期茎叶过盛使产量略有减少,总氮排放负荷减少29%、总磷减少39%,氮肥利用率相当;在一定范围内增加施氮量可促进水稻的生长发育与高产;高施氮量下增加追肥次数可促进水稻后期生长与高产,但低施氮量下增加追肥次数可能会产生相反效果。

Abstract

In order to further explore the mechanism between rice growth and water nutrients, give full play to the coupling effect of water and fertilizer, the experimental study on the comprehensive regulation of water and fertilizer was carried out at Hubei Provincial Central Station. Three irrigation modes were set up: conventional flooding irrigation mode (W0), intermittent irrigation mode (W1), and rain-storing intermittent irrigation mode (W2), as well as three levels of nitrogen application: no nitrogen fertilizer treatment (N0), local actual nitrogen level (N1), local application nitrogen level 75% (N2); There are two kinds of fertilization methods: base fertilizer + primary topdressing (F1), base fertilizer + secondary topdressing (F2). The test results show that compared with flooding irrigation mode (W0), intermittent irrigation mode is beneficial to the late growth and high yield of rice, the total nitrogen emission load is reduced by 26%, the total phosphorus is reduced by 11%, and the utilization rate of nitrogen fertilizer is increased by 5.2%; Compared with intermittent irrigation mode, rain-storing intermittent irrigation mode will promote the growth of rice during the whole growth period, but in the later stage, excessive stems and leaves will slightly reduce the yield, total nitrogen emission load decreased 29%, total phosphorus decreased 39%, and the nitrogen fertilizer utilization rate is equivalent; Increasing the amount of nitrogen in a certain range can promote the growth and high yield of rice; And increasing the number of topdressing under high nitrogen can promote the late growth and high yield of rice, but increasing the number of topdressing under low nitrogen may have the opposite effect.

关键词

水肥耦合 / 灌溉模式 / 施肥水平 / 施肥方式 / 水肥利用率

Key words

water and fertilizer coupling / irrigation mode / fertilizer treatment / fertilization methods / water and fertilizer utilization

基金

国家青年自然科学基金

引用本文

导出引用
刘路广, 陈扬, 吴瑕, 余乾安, 潘少斌, 杨小伟, 王敬, 王丽红. 不同水肥综合调控模式下水稻生长特征、水肥利用率及氮磷流失规律[J].中国农村水利水电, 2020(12): 67-72
LIU Lu-guang, CHEN Yang, WU Xia, YU Qian-an, PAN Shao-bin, YANG Xiao-wei, WANG Jing, WANG Li-hong. Growth Characteristics of Rice,Water-fertilizer Utilization and Nitrogen and Phosphorus Loss Law Under Different Water-fertilizer Control Patterns[J].China Rural Water and Hydropower, 2020(12): 67-72

参考文献

[1]熊振民. 从水稻生产现状展望21世纪[J].作物杂志,1995(5):1-5.
[2]朱寒, 时元智, 洪大林, 等. 水肥调控对水稻叶片SPAD值与产量的影响[J]. 中国农村水利水电, 2019(11):50-53.
[3]程建平. 水稻节水栽培生理生态基础及节水灌溉技术研究[D]. 武汉: 华中农业大学, 2007.
[4]段琪彩, 黄英, 韩焕豪, 等. 云南半湿润区水稻需水规律试验研究[J]. 中国农村水利水电, 2018(11):21-25.
[5]姜晓剑, 汤亮, 刘小军, 等. 中国主要稻作区水稻生产气候资源的时空特征[J].农业工程学报,2011,27(7):238-245.
[6]何军, 常元莉, 李雪蓉, 等. 节灌条件缓释肥对水稻株高、分蘖、叶绿素及产量的影响[J]. 中国农村水利水电, 2016(3):7-9.
[7]余双. 不同水肥制度下稻田节水、增产、减污效果研究[D]. 武汉: 武汉大学, 2015.
[8]徐国伟, 王贺正, 翟志华, 等. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响[J]. 农业工程学报, 2015,31(10):132-141.
[9]杨士红, 彭世彰, 徐俊增, 等. 不同水氮管理下稻田氨挥发损失特征及模拟[J]. 农业工程学报, 2012,28(11):99-104.
[10]JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J].Proc Natl Acad Sci U S A,2009,106(9):3 041-3 046.
[11]PENG S B, Buresh R J, HUANG J L, et al. Improving Nitrogen Fertilization in Rice by Site-Specific N Management[J]. Agronomy for Sustainable Development, 2010(30):649-656.
[12]昝鹏, 陈燕萍. 不同水肥耦合水稻温室效应及氮素利用率研究[J].节水灌溉, 2018(2):56-60.
[13]彭世彰, 熊玉江, 庞桂斌, 等. 水氮调控对水稻氮素吸收与利用的影响[J]. 节水灌溉, 2012(2):1-4.
[14]ZHANG Z J, CHU G, LIU L J, et al. Mid-season nitrogen application strategies for rice varieties differing in panicle size[J].Field Crops Research,2013,150(15):9-18.
[15]DUCHEMIN M, HOGUE R. Reduction in agricultural non-point source pollution in the first year following establishment of an integrated grass/tree filter strip system in southern Quebec (Canada)[J].Agriculture Ecosystems & Environment,2009,131(1):85-97.
[16]刘福兴, 宋祥甫, 邹国燕, 等. 农村面源污染治理的“4R”理论与工程实践:水环境生态修复技术[J].农业环境科学学报,2013,32(11):2 105-2 111.
[17]李颖, 王康, 周祖昊. 基于swat模型的东北水稻灌区水文及面源污染过程模拟[J]. 农业工程学报, 2014,30(7):42-53.
[18]王晓宇. 汾河水库及其上游饮用水功能区农业面源污染及治理保护[J].中国水土保持, 2010,2010(6):55-57.
[19]刘晓雨, 李志鹏, 潘根兴, 等. 长期不同施肥下太湖地区稻田净温室效应和温室气体排放强度的变化[J].农业环境科学学报,2011,30(9):1 783-1 790.
[20]李道西, 彭世彰, 徐俊增, 等. 节水灌溉条件下稻田生态与环境效应[J].河海大学学报(自然科学版), 2005,33(6):27-31.
[21]YANG J C. Approaches to achieve high grain yield and high resource use efficiency in rice[J]. Frontiers of Agricultural Science and Engineering, 2015,2(2):115-123.
[22]龚孟梨, 吕成长, 陈苏春, 等. 浙江低山丘陵区单季稻节水增产减污水肥综合调控模式[J]. 中国农村水利水电, 2012(12):12-16.
[23]何军, 何天楷, 张宇航, 等. 不同水肥处理水稻氮磷吸收利用及产量试验研究[J]. 灌溉排水学报, 2020,39(6):67-72.
[24]李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用率的影响研究进展[J]. 中国水稻科学, 2017,31(3):327-334.
PDF(2723 KB)

访问

引用

详细情况

段落导航
相关文章

/