参数辨识是系统辨识的重要内容,其方法的有效性决定了建模的最终精度。水轮机调节系统是一类复杂非线性系统,其参数会随运行工况的变化而改变。同时,实际测量信号受环境的影响而夹杂着噪声等无关信息,这将增加参数辨识的难度。因此,对于不同工况和测试条件,参数辨识方法的适用性和精度,以及参数的可辨识性值得进一步研究。以国网水口电站机组为研究对象,基于多种智能优化算法并考虑多种试验工况,对比研究了在不同辨识场景下各辨识算法的有效性和精度,以及参数的可辨识性。结果表明,生物地理学优化算法在各种辨识条件下均具有较好且稳定的性能。
Abstract
Parameter estimation is an important part of system identification, and the final accuracy of modeling is determined by the effectiveness of its method. Hydraulic turbine regulating system is a complex non-linear system, and its parameters will change with the operating conditions. At the same time, the actual measurement signal is affected by the environment and is mixed with irrelevant information such as noise, which will increase the difficulty of parameter identification. Therefore, the applicability and accuracy of the parameter identification method for different operating and testing conditions, and the identifiability of the parameters are worthy of a further study. Based on a variety of intelligent optimization algorithms and two experimental conditions, the effectiveness and accuracy of each identification algorithm under various identification scenarios as well as the identifiability of parameters are compared and studied in this paper. The results show that the biogeography-based optimization algorithm has high and stable performance under various identification conditions.
关键词
智能优化算法 /
参数辨识 /
水轮机调节系统 /
功率模式 /
空载模式
{{custom_keyword}} /
Key words
intelligent optimization algorithm /
parameter identification /
hydro-turbine governing system /
power mode /
no-load mode
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]冯雁敏,王湛,张雪源,等.基于混沌粒子群算法的水轮机调速系统参数辨识及建模试验[J].长江科学院院报,2016,33(8):138-143,150.
[2]高晓光,唐戢群,刘德发,等.水轮机及调节系统模型辨识试验研究[J].人民长江,2016,47(13):84-89.
[3]李超顺. 水电机组控制系统辨识及故障诊断研究[D].武汉:华中科技大学,2010.
[4]寇攀高. 水轮发电机及其调速系统的参数辨识方法与控制策略研究[D].武汉:华中科技大学,2012.
[5]许颜贺. 抽水蓄能机组调速系统参数辨识及控制优化研究[D].武汉:华中科技大学,2017.
[6]张辉. 大功率直流输电系统背景下孤岛态送电侧控制策略研究及动态过程分析[D].武汉:武汉大学,2015.
[7]黄青松,徐广文.水轮机调速系统自定义建模与应用[J].电力系统自动化,2012,36(16):115-117.
[8]刘俊敏,李兴源,王曦,等.基于改进矩阵束算法的水轮机控制系统参数辨识[J].大电机技术,2015(2):60-64.
[9]李超顺,江均,樊晓东.基于Walsh变换的水轮机调节系统参数辨识[J].水电能源科学,2012,30(4):116-118.
[10]李剑波,肖剑,寇攀高,等.基于灰狼优化算法和EEMD的水轮机调节系统强噪声环境在线辨识方法研究[J].水力发电,2019,45(5):77-81.
[11]孟佐宏,陈光大,黄绵华.水轮机调节系统参数辨识中试验数据的预处理方法[J].水力发电,2010,36(12):57-59,68.
[12]HOLLAND, J H. Genetic algorithms and the optimal allocation of trials[J]. SIAM Journal on Computing, 1973,2(2):88-105.
[13]EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]∥ Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995:39-43.
[14]SIMON D. Biogeography-based optimization [J]. IEEE Transactions on Evolutionary Computation, 2008,12(6):702-713.
[15]RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: A gravitational search algorithm [J]. Information Sciences, 2009,179(13):2 232-2 248.