输水渠系着生藻类水力生消动态建模及仿真研究

杨梦薇1,管光华1,刘大志2

PDF(3680 KB)
中国农村水利水电 ›› 2021 ›› (1) : 12-17.
水环境与水生态

输水渠系着生藻类水力生消动态建模及仿真研究

  • 杨梦薇1,管光华1,刘大志2
作者信息 +

Modeling the Growth and Detaching Hydrodynamic of Fixed Algae in the Open Channel System

Author information +
稿件信息 +

摘要

明渠输水系统由于着生藻类生长等因素,渠道糙率增加渠道输水能力降低。现有的物理化学生物除藻方法因其各自的局限性而无法在灌区管理中广泛应用。水力除藻从水动力学角度出发,通过增大剪切层内水流对边界的剪应力,达到剥离水藻的目的。而研究水力除藻,水藻不能视为固定静态的边界,因此需要建立藻类的生态系统模型。综合了以流速温度营养物和光照为影响因素的藻类生长模型以及包含自然消亡和冲刷剥离的藻类消散模型,以南方某灌区部分干渠为仿真对象,研究藻类生长动态变化,通过仿真揭示出其生物量随着环境变量而变化的动态过程,其峰值出现在夏季,计算结果符合渠道藻类生长动态变化规律,为渠道藻类水力调控提供了基础。

Abstract

Due to algal growth and other factors, the roughness of the open channel increases as time and channel capacity decrease. The existing physical, chemical and biological algal treatment methods all have their own limitations when applied to irrigation management. An original strategy to limit the algal biomass is to carry out regular flushes. A flush is performed by increasing the hydraulic shear conditions. Consequently, to the shear stress increase, a part of the fixed algae is detached. Since algae cannot be regarded as fixed, static boundary, a hydrodynamic model calls for a hydraulic flush study. The model includes two parts: one is algal growth model, which considers environment factors including water velocity, temperature, nutrition, and light; the other one is algal detach model. Then, the model is used to simulate a typical southern irrigation channel in China. Results reveal that the algal biomass changes with environment variables, and the peak occurs in summer. The simulation results are in agreement with the algal growth law and may provide firm basis for hydraulic flush research.

关键词

着生藻类 / 藻类生长 / 环境因子 / 藻类消散 / 水力除藻

Key words

fixed algae / algal growth / environment factors / algal death / hydraulic flush

基金

国家自然科学基金;国家自然科学基金;国家自然科学基金;“十三五”国家重点研发项目

引用本文

导出引用
杨梦薇1,管光华1,刘大志2. 输水渠系着生藻类水力生消动态建模及仿真研究[J].中国农村水利水电, 2021(1): 12-17
. Modeling the Growth and Detaching Hydrodynamic of Fixed Algae in the Open Channel System[J].China Rural Water and Hydropower, 2021(1): 12-17

参考文献

[1]刘麟菲. 渭河流域着生藻类群落结构与环境因子的关系[D]. 辽宁大连:大连海洋大学, 2014.
[2]AKKUZU E, UNAL HB, KARATAS BS, et al. Evaluation of irrigation canal maintenance according to roughness and active canal capacity values[J]. Journal of Irrigation and Drainage Engineering-Asce, 2008,134(1): 60-66.
[3]乐建新, 闫亚楠, 李小燕, 等. 微生物对混凝土的侵蚀机理及其控制的研究[J]. 江苏建材, 2006(3):14-16,26.
[4]SINDELAR HR, YAP JN, BOYER TH, et al. Algae scrubbers for phosphorus removal in impaired waters[J]. Ecological Engineering, 2015,85:144-158.
[5]汪小雄. 化学方法在除藻方面的应用[J]. 广东化工, 2011(4):24-26.
[6]王希越, 刘东方, 王伟斌, 等. 高盐景观水体除磷除藻药剂优选及复配[J]. 南水北调与水利科技, 2019,17(2):49-54.
[7]贾柏樱, 马华. 生物操纵技术控制原水藻类的应用研究[J]. 中国给水排水, 2017,33(9):11-15.
[8]马国红, 杜兴华. 除藻技术应用现状及发展[J]. 渔业现代化, 2007(4):25-27.
[9]彭成荣, 陈磊, 毕永红, 等. 三峡水库洪水调度对香溪河藻类群落结构的影响[J]. 中国环境科学, 2014,34(7):1 863-1 871.
[10]FOVET O, LITRICO X, BELAUD G. Turbidity management during flushing-flows: A model for open-loop control[J]. Advances in Water Resources, 2012,39:7-17.
[11]SATTHONG S, SAEGO K, KITRUNGLOADJANAPORN P, et al. Modeling the effects of light sources on the growth of algae[J]. Advances in Difference Equations, 2019:6.
[12]徐良, 冯平, 孙冬梅, 等. 水温对藻类生长变化影响的数值模拟[J]. 安全与环境学报, 2013,13(5):76-81.
[13]陈格君, 周文斌, 李美停, 等. 鄱阳湖氮磷营养盐对浮游植物群落影响研究[J]. 中国农村水利水电, 2013(3):48-52,61.
[14]SMOLAR-ZVANUT N, MIKOS M. The impact of flow regulation by hydropower dams on the periphyton community in the Soca River, Slovenia[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2014,59(5):1 032-1 045.
[15]贾海峰, 张岩松, 何苗. 北京水系多藻类生态动力学模型[J]. 清华大学学报(自然科学版), 2009,49(12):1 992-1 996.
[16]林春焕. 藻类生长机制分析及其多智能体模型构建[D]. 南宁:广西大学, 2018.
[17]LIU H D, ZHENG Z C, YOUNG B. Three-dimensional numerical simulations of hydrodynamics with algae transport and its biological behaviors in surface water systems[J]. Ocean Engineering, 2019,183:116-131.
[18]黄宁秋. 水动力条件对三峡库区次级支流典型藻类生长影响[D]. 重庆:重庆大学, 2015.
[19]窦明, 孟猛, 毛豪林, 等. 小型人工湖藻类变化特征及主要驱动因子研究[J]. 中国农村水利水电, 2019(5):77-81,90.
[20]刘晓江, 施心路, 齐桂兰, 等. 淡水藻类在监测水质和净化污水中的应用[J]. 生物学杂志, 2010,27(6):76-78,86.
[21]蒙国湖, 龙天渝, 贺栋才, 等. 嘉陵江重庆磁器口段藻类生长模拟研究[J]. 工业安全与环保, 2009,35(4):23-25.
[22]FOVET O, LITRICO X, BELAUD G. Modeling and control of algae detachment in regulated canal networks[J]. Control Applications (CCA), 2010 IEEE International Conference on, 2010.
[23]许秋瑾, 秦伯强, 陈伟民, 等. 太湖藻类生长模型研究[J]. 湖泊科学, 2001(2):149-157.
[24]逄勇, 丁玲, 高光. 基于生态槽实验的藻类生长参数确定[J]. 环境科学, 2005(3):78-82.
[25]姜登岭, 马轩凯, 倪国葳, 等. 氮磷对陡河水库藻类生长的影响[J]. 河北理工大学学报(自然科学版), 2010,32(1):98-101.
[26]SON DH, FUJINO T. Modeling approach to periphyton and nutrient interaction in a stream[J]. Journal of Environmental Engineering-Asce, 2003,129(9):834-843.
[27]ASAEDA T, SON DH. A model of the development of a periphyton community: resource and flow dynamics[J]. Ecological Modelling, 2001,137(1):61-75.
[28]李锦秀, 禹雪中, 幸治国. 三峡库区支流富营养化模型开发研究[J]. 水科学进展, 2005(6):777-783.
[29]崔学明. 农业气象学[M]. 北京:高等教育出版社, 2006:196.
[30]肖金香,穆彪,胡飞. 农业气象学[M]. 北京: 高等教育出版社, 2009:272.
[31]张少泉. 有关地理纬度和地心纬度的换算问题[J]. 西北地震学报, 1985(1):39-43.
[32]左大康, 弓冉. 中国太阳直接辐射散射辐射和太阳总辐射间的关系[J]. 地理学报, 1962(3):175-186.
[33]陆慧. 光学[M]. 上海:华东理工大学出版社, 2014:213.
[34]KOLOKOLNIKOV T, OU C, YUAN Y. Phytoplankton depth profiles and their transitions near the critical sinking velocity[J]. J Math Biol, 2009,59(1):105-122.
[35]龙天渝, 周鹏瑞, 吴磊. 环境因子对香溪河春季藻类生长影响的模拟实验[J]. 中国环境科学, 2011,31(2):327-331.
[36]黄钰铃. 三峡水库香溪河库湾水华生消机理研究[D]. 陕西杨凌:西北农林科技大学, 2007.
[37]UEHLINGER U, BUHRER H, REICHERT P. Periphyton dynamics in a floodprone prealpine river: Evaluation of significant processes by modelling[J]. Freshwater Biology, 1996,36(2):249-263.
[38]GAILANI J, ZIEGLER CK, LICK W. Transport of suspended-solids in the lower fox river[J]. Journal of Great Lakes Research, 1991,17(4):479-494.
[39]赵昕,张晓元,赵明登,等. 普通高等教育“十一五”规划教材 水力学[M]. 北京:中国电力出版社, 2009.
[40]莫振宁, 管光华, 刘大志,等. 南水北调中线总干渠冰情预测模型参数敏感性分析及率定[J]. 南水北调与水利科技, 2016(6):68-74,80.
PDF(3680 KB)

523

访问

0

引用

详细情况

段落导航
相关文章

/