水电站作为优质的调峰调频电源,对保证电网安全稳定运行发挥着重要的作用,这对水电机组调节性能提出了更高要求。为提高水轮机调节系统的控制品质,在非线性水轮机模型的基础上,根据动态线性化理论以及Lipschitz条件,提出无模型自适应控制(MFAC)与离散滑模趋近律控制相结合的水电机组调节系统优化控制策略,并利用天牛须算法(BAS)结合误差积分准则函数,实现控制参数优化。仿真结果表明在不同工况下,相比于最优PID控制器,MFAC滑模控制器系统具有超调量小,上升时间短的优点,而BAS算法参数寻优效果优秀,计算耗费时间短,具有较好的应用前景。
Abstract
As a high-quality power source undertaking peak load and frequency regulation, hydropower stations play an important role in ensuring the safe and stable operation of the power grid, which expects a lot from the regulation performance of hydropower units. In order to improve the control quality of the hydro-turbine regulating system, based on the nonlinear model of hydro-turbine, a model-free adaptive control (MFAC) combined with discrete sliding mode approaching law control for hydropower unit regulation is proposed according to the dynamic linearization theory and Lipschitz condition. The parameter optimization of the controller of the hydropower unit is realized by using the beetle antennae search (BAS) combined with the error integral criterion function. The simulation results show that the MFAC sliding mode controller has advantages like small overshoot and short rise time compared with the optimal PID controller under different operating conditions. Meanwhile, the BAS algorithm has excellent parameter optimization effect, short calculation time and a good application prospect.
关键词
水力机组 /
无模型控制 /
滑模控制 /
天牛须算法 /
优化控制
{{custom_keyword}} /
Key words
hydraulic unit /
model-free control /
sliding-mode control /
beetle antennae search /
optimal control
{{custom_keyword}} /
基金
复杂多变网构下水电机组稳定性机理与机网协调控制研究
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]李超顺,周建中,肖汉,等.基于引力搜索模糊模型辨识的水电机组预测控制[J].水力发电学报,2013,32(6):272-277.
[2]郭再泉,赵翱东.基于免疫小波神经网络PID的水轮机调速控制研究[J].大电机技术,2014(4):77-80.
[3]王涛,余向阳,辛华,等.基于协同进化算法的水轮机模糊PID调节系统模糊规则的研究[J].水力发电学报,2007,26(2):137-142.
[4]YUAN XH, CHEN ZH, YUAN YB, et al. Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method[J].Energy,2015,93:173-187.
[5]武俊峰,姜欣辰.基于粒子群算法的直线二级倒立摆LQR控制器优化控制方法[J].黑龙江科技大学学报,2018,28(5):570-576.
[6]张华,郑加强.一种自抗扰最优控制器设计方法研究[J].控制工程,2018,25(12):2 219-2 223.
[7]侯忠生,韩志刚.非线性系统鲁棒无模型学习自适应控制[J].控制与决策,1995,10(2):137-142.
[8]刘世达.数据驱动建模与无模型自适应控制及在复杂工业系统中的应用[D].北京:北京交通大学,2017.
[9]董娜,常建芳,韩学烁,等.大时滞系统的无模型控制方法及应用[J].哈尔滨工程大学学报,2018,39(12):1 987-1 993.
[10]刘金琨.滑模变结构控制Matlab仿真[M].北京: 清华大学出版社,2005.
[11]JIANG XY, LIN ZY, HE TH, et al. Optimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategies[J]. IEEE Access, 2020(8):15 459-15 471.
[12]黄光斌,刘冬,刘东,等. 多种智能优化算法在水轮机调节系统参数辨识中的应用[J]. 中国农村水利水电,2020(6):193-198.