澜沧江中上游及元江水电开发水足迹分析

肖复晋1,陆颖1,2,袁旭1,蒋丽1,梁斯琦1,蒋永健1

PDF(2233 KB)
中国农村水利水电 ›› 2021 ›› (1) : 188-191.
水电建设

澜沧江中上游及元江水电开发水足迹分析

  • 肖复晋1,陆颖1,2,袁旭1,蒋丽1,梁斯琦1,蒋永健1
作者信息 +

An Analysis of the Water Footprint of Hydropower Development in the Middle and Upper Reaches of Lancang River and Yuanjiang River

Author information +
稿件信息 +

摘要

为定量评估澜沧江中上游及元江水电开发对水资源的消耗并判断其影响因素,同时与全流域对比澜沧江中上游水电开发水资源消耗水平,以澜沧江中上游和元江两个不同水热、地形条件的干流水库为研究对象,采用总蒸发水量法计算水电站水足迹。结果表明:元江干流的2座水电站水足迹平均值为3.19 m3/GJ,澜沧江4座水电站平均值为0.51 m3/GJ,均低于全国水平,显示出澜沧江中上游水电开发巨大优势。气温对计算结果影响最大,其次是地形因素。

Abstract

In order to quantitatively evaluate the water consumption of the middle and upper reaches of the Lancang River and the Yuanjiang River hydropower development and determine its influencing factors, the water consumption level of the middle and upper reaches of the Lancang River for hydropower development is compared with that of the whole basin. The main stream reservoir is the research object, and the consumptive water use method is used to calculate the water footprint of the hydropower station. The results show that the average water footprint of the two hydropower stations on the mainstream of the Yuanjiang River is 3.19 m3/GJ, and the average of the four hydropower stations of the Lancang River is 0.51 m3/GJ, which are lower than the national level, showing the advantages of hydropower development in the upper and middle reaches of the Lancang River. Temperature has the greatest influence on the calculation results, followed by topographical factors.

关键词

水足迹 / 水电站 / 澜沧江 / 元江 / 总蒸发水量法

Key words

water footprint / hydropower station / Lancang River / Yuanjiang River / consumptive water use method

基金

国家重点研发计划;云南省自然科学研究重点项目

引用本文

导出引用
肖复晋1,陆颖1,2,袁旭1,蒋丽1,梁斯琦1,蒋永健1. 澜沧江中上游及元江水电开发水足迹分析[J].中国农村水利水电, 2021(1): 188-191
. An Analysis of the Water Footprint of Hydropower Development in the Middle and Upper Reaches of Lancang River and Yuanjiang River[J].China Rural Water and Hydropower, 2021(1): 188-191

参考文献

[1]UNESCO. The United Nations World Water Development Report 2018[R/OL]. https:∥www.unwater.org/publications/world-water-development-report-2018/,20180319.
[2]马丽梅,史丹,裴庆冰.中国能源低碳转型(2015—2050):可再生能源发展与可行路径[J].中国人口·资源与环境,2018,28(2):8-18.
[3]彭才德.“十三五”水电发展及展望[J].中国电力企业管理,2019(2):34-36.
[4]帅伟.西南水电“弃水”困局与对策[J].中国电力,2017,50(10):171-175.
[5]吴娅,王雨春,胡明明,等.三峡库区典型支流浮游细菌的生态分布及其影响因素[J].生态学杂志,2015,34(4):1 060-1 065.
[6]周祥林,单婕.绿色水电评估与流域环境监测体系初探[J].水科学与工程技术,2017(2):59-61.
[7]陆波,喻卫奇,李书飞.浅谈绿色水电认证制度的建立[J].水电能源科学,2014,32(1):161-164.
[8]何洋,纪昌明,石萍.水电站蓝水足迹的计算分析与探讨[J].水电能源科学,2015,33(2):37-41.
[9]GERBENS-LEENESE P W, HOEKSTRA A Y, VAN DER MEER T. The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply[J]. Ecological Economics,2009,68:1 052-1 060.
[10]陆颖,何大明,何开为,等.澜沧江-湄公河水电站单位发电耗水量分析计算[J].水科学进展,2018,29(3):415-423.
[11]MEKONNEN M M,HOEKSTRA A Y. The blue water footprint of electricity from hydropower[J].Hydrology and Earth System Sciences, 2012,16:179-187.
[12]MEKONNEN M M, GERBENS-LEENES P W, HOEKSTRA A Y. Future electricity: The challenge of reducing both carb-on and water footprint[J]. Science of The Total Environment, 2016,569-570:1 282-1 288.
[13]INDIKA H, MARKUS D, DAVID H, et al. The water footprint of hydroelectricity: a methodological comparison from a case study in New Zealand[J]. Journal of Cleaner Production, 2011,19:1 582-1 589.
[14]BAKKEN T H, MODAHL I S, ENGELAND K, et al. The life-cycle water footprint of two hydropower projects in Norway[J].Journal of Cleaner Production, 2016,113:241-250.
[15]石萍,纪昌明,李继伟,等.三峡-葛洲坝梯级水电站蓝水足迹的计算与影响因子分析[J].水力发电学报,2014,33(2):82-89.
[16]朱艳霞.水足迹理论及其在金沙江中游梯级水电开发利用中的应用[D]. 北京:华北电力大学,2013.
[17]赵丹丹,刘俊国,赵旭.基于效益分摊的水电水足迹计算方法:以密云水库为例[J].生态学报,2014,34(10):2 787-2 795.
[18]袁旭,陆颖,何开为,等.澜沧江中下游干流水电开发水足迹研究[J].水电能源科学,2018,36(6):37-39.
[19]袁旭,陆颖,毕晓静,等.一种水电站水足迹改进计算方法[J].中国农村水利水电,2018(7):165-168.
[20]何大明.澜沧江—湄公河水文特征分析[J].云南地理环境研究,1995,7(1):58-74.
[21]何大明,汤奇成.中国国际河流[M].北京:科学出版社,2000.
[22]WLE Greater Mekong. Data Set on the Dams of the Greater Mekong[DB/OL]. https:∥wle-mekong.cgiar.org/, 20180917.
[23]施成熙,牛克源,陈天珠,等.水面蒸发器折算系数研究[J].地理科学,1986,6(4):305-313.
[24]许金电,高璐.热带印度洋降水、蒸发的时空特征及其对海表盐度的影响[J].海洋学报,2018,40(7):90-102.
[25]周连童,黄荣辉.华北地区降水、蒸发和降水蒸发差的时空变化特征[J].气候与环境研究,2006,11(3):280-295.
[26]李路遥.引入蒸发的逐日监测干旱方法及其应用[D].南京:南京信息工程大学,2017.
[27]甘淑,何大明.纵向岭谷区地势曲线图谱及地貌特征分析[J].云南大学学报(自然科学版),2004,26(6):534-540.
[28]焦丹丹,吉喜斌,金博文,等.干旱气候条件下多种潜在蒸发量估算方法对比研究[J].高原气象,2018,37(4):1 002-1 016.
PDF(2233 KB)

访问

引用

详细情况

段落导航
相关文章

/