阶梯-深潭结构的潜流交换及污染物运移模拟

王伟

PDF(6917 KB)
中国农村水利水电 ›› 2021 ›› (1) : 32-35.
水环境与水生态

阶梯-深潭结构的潜流交换及污染物运移模拟

  • 王伟
作者信息 +

Simulation of Hyporheic Exchange and Pollutant Migration in Step-pool Structures

Author information +
稿件信息 +

摘要

为了揭示阶梯-深潭结构中河床污染物运移过程,以及潜流交换强度与单宽流量坎高比的关系,探讨合适的阶梯-深潭治污工程参数,进行了多组阶梯-深潭结构潜流交换模拟。结果表明:地表水在阶梯坎上游进入河床,驱赶污染物至下游河床再排出,清洁区域自阶梯坎向上游延伸较快,当延伸至下游渐近线附近时污染物运移速度明显减缓;在相同的河床梯度和流量条件下,阶梯-深潭结构引起的潜流交换强度约为平坦河床的37倍;潜流交换强度与单宽流量坎高比均呈幂函数关系,单宽流量和坎高比越大则潜流交换强度越大;人工引入阶梯-深潭结构时,阶梯坎高度0.4 m间距30 m时,河床污染物治理效果较好。

Abstract

In order to reveal the migration process of riverbed pollutants in the step-pool structure, and the relationship between the intensity of the hyporheic exchange and the single-wide flow and the height ratio, the appropriate step-pool pollution control engineering parameters are explored. Underwater flow simulation of steep-pool structures, the results show that the surface water enters the river bed upstream of the step ridge, driving out pollutants to the downstream river bed for discharge, and the clean area extends faster from the step ridge to the upstream. When it extends to the downstream asymptote, the migration speed of the pollutants slows down significantly. Under the conditions of riverbed gradient and flow, the intensity of the hyporheic exchange caused by the step-pool structure is about 37 times that of a flat riverbed. The intensity of the hyporheic exchange has a power function relationship with the single-wide flow and the height ratio. When the step-pool structure is artificially introduced, the step height is 0.4 m and the spacing is 30 m, the riverbed pollutant treatment works better.

关键词

阶梯-深潭 / 潜流交换 / 交换强度 / 单宽流量 / 坎高比 / 污染物运移

Key words

step-pool / hyporheic exchange / exchange intensity / single-width flow / height ratio / pollutant migration

基金

国家自然科学基金

引用本文

导出引用
王伟. 阶梯-深潭结构的潜流交换及污染物运移模拟[J].中国农村水利水电, 2021(1): 32-35
. Simulation of Hyporheic Exchange and Pollutant Migration in Step-pool Structures[J].China Rural Water and Hydropower, 2021(1): 32-35

参考文献

[1]吴娜娜,何洋,谭有晨.我国黑臭水体的污染现状与治理技术[J].建筑与预算,2019(11):79-81.
[2]唐晶,庞维海,林常源,等.我国黑臭水体的成因分析与综合治理技术[J].应用化工,2019(11):1-7.
[3]舒诗湖.国家“水十条”考核与城市节水[J].供水技术,2018,12(2):52-55.
[4]陈孝兵,赵坚,李英玉,等.床面形态驱动下潜流交换试验[J].水科学进展,2014,25(6):835-841.
[5]陈孝兵,郑春阳,袁越,等.河床沉积物非均质性影响下的潜流交换数值模拟[J].水科学进展,2019,30(2):220-229.
[6]张强.河水位波动下潜流带非均质性对氮的迁移转化过程影响研究[D].哈尔滨:哈尔滨工业大学,2019.
[7]鲁程鹏,张颖,朱静思,等.基于热追踪方法的河流横断面潜流交换时空非均质特征研究[J].第四纪研究,2014,34(5):1 094-1 105.
[8]罗雪芬.河床地貌所引起的潜流交换研究[D].北京:中国地质大学,2017.
[9]SAWYER A H,CARDENAS M B,BUTTLES J.Hyporheic exchange due to channel-spanning logs[J].Water Resources Research,2011,47(8):3 874-3 883.
[10]ENDRENY T,LAUTZ L,SIEGEL D I.Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models[J].Water Resources Research,2011,47(2):1 935-1 944.
PDF(6917 KB)

746

访问

0

引用

详细情况

段落导航
相关文章

/