基于人工神经网络的雅鲁藏布江流域NDVI预测模型

迟凯歌1,2,庞博1,2,石树兰1,2,崔黎壮1,2

PDF(6418 KB)
中国农村水利水电 ›› 2021 ›› (1) : 84-89.
水文水资源

基于人工神经网络的雅鲁藏布江流域NDVI预测模型

  • 迟凯歌1,2,庞博1,2,石树兰1,2,崔黎壮1,2
作者信息 +

Prediction of NDVI in the Yarlung Zangbo River Using Artificial Neural Networks

Author information +
稿件信息 +

摘要

雅鲁藏布江流域既是生态资源的宝库,又是全球气候变化的敏感区。研究基于2000-2015年的MODIS数据和30个地面站点气象数据资料,在分析雅鲁藏布江流域的NDVI归一化植被指数时空变化特征的基础上,分别采用偏相关分析和主成分分析法,辨识了影响各子流域NDVI变化的主导气候因素,并此基础上构建了基于人工神经网络的雅鲁藏布江流域NDVI预测模型。结果表明:①雅鲁藏布江流域NDVI整体上呈现出从流域的上游到流域的下游逐渐增加的趋势;②主成分分析(PCA)和偏相关分析(PAR)的结果表明,降雨和气温的影响主要集中在前3个月且气温的影响大于降水;③分别构建了ANN-PCAANN-PAR和ANN模型,其率定期NASH效率系数平均值达到0.75,0.71,0.63,验证期平均达到0.73,0.69,0.62。结果表明,因子筛选能够显著提高模型精度,所建的模型精度较高,能够较好的模拟和预测雅鲁藏布江流域的NDVI时空变化趋势。

Abstract

The Yarlung Zangbo River Basin is not only a treasure of ecological resources, but also a sensitive area for global climate change. Based on the MODIS data from 2000 to 2015 and meteorological data of 30 ground stations, the spatial-temporal variation characteristics of the NDVI (the normalized difference vegetation index) in the Yarlung Zangbo River Basin are analyzed. The partial climatic analysis and principal component analysis are adopted to identify the dominant climatic factors that affect the NDVI change in each subzone. On this basis, the NDVI prediction models based on artificial neural networks are proposed and applied to Yarlung Zangbo River Basin. The results show: ①The NDVI in the Yarlung Zangbo River Basin is gradually increasing from the upstream to the downstream. ②The results of principal component analysis (PCA) and partial correlation analysis (PAR) show that rainfall and temperature in the first three months are the main factors affecting vegetation. ③The ANN-PCA, ANN-PAR and ANN models are proposed and applied in the Yarlung Zangpo River Basin. The average Nash coefficients are 0.75, 0.71 and 0.63 in calibration period respectively, and 0.73, 0.69 and 0.62 in the verification period respectively. The results show that climatic factor identification can improve the model accuracy significantly. The proposed models achieve satisfied accuracy and can be applied to predict the spatial and temporal trend of NDVI in the Yarlung Zangbo River Basin.

关键词

人工神经网络 / 雅鲁藏布江 / 归一化植被指数 / 主成分分析 / 偏相关分析

Key words

artificial neural network / Yarlung Zangbo River / NDVI / principal component analysis / partial correlation analysis

基金

国家自然科学基金重大研究计划重点支持资助项目

引用本文

导出引用
迟凯歌1,2,庞博1,2,石树兰1,2,崔黎壮1,2. 基于人工神经网络的雅鲁藏布江流域NDVI预测模型[J].中国农村水利水电, 2021(1): 84-89
. Prediction of NDVI in the Yarlung Zangbo River Using Artificial Neural Networks[J].China Rural Water and Hydropower, 2021(1): 84-89

参考文献

[1]潘耀忠, 李晓兵, 何春阳. 中国土地覆盖综合分类研究: 基于NOAA/AVHRR Holdridge PE[J]. 第四纪研究, 2000(3):270-281.
[2]章文波, 符素华, 刘宝元. 目估法测量植被覆盖度的精度分析[J]. 北京师范大学学报(自然科学版), 2001,37(3):402-408.
[3]祁燕, 王秀兰, 冯仲科, 等. 基于RS与GIS的北京市植被覆盖度变化研究[J]. 林业调查规划, 2009,34(2):1-4.
[4]IWASAKI H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS temperature data[J]. Journal of Arid Environments, 2009,73(4):557-562.
[5]玛丽艳姑丽·阿西穆, 塔西甫拉提·特依拜, 买买提·沙吾提, 等. 基于Markov模型的植被覆盖动态变化预测研究[J]. 水土保持研究, 2013,20(1):121-125.
[6]林楠, 姜琦刚, 张红红, 等. 植被覆盖变化分析及其预测方法研究: 以吉林东部为例[J]. 安徽农业科学, 2012,40(25):12 591-12 593.
[7]WANG S, HUANG G H, BAETZ B.W, et al. A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment[J]. Journal of Hydrology, 2015,530:716-733.
[8]除多, 次仁多吉, 王彩云, 等. 利用MODIS数据估算西藏高原地表植被覆盖度[J]. 遥感技术与应用, 2010,25(5):708-712.
[9]高冰, 杨大文, 刘志雨, 等. 雅鲁藏布江流域的分布式水文模拟及径流变化分析[J]. 水文, 2008,28(3):40-44.
[10]巩同梁, 刘昌明, 刘景时. 拉萨河冬季径流对气候变暖和冻土退化的响应[J]. 地理学报, 2006,51(5):73-80.
[11]张核真, 卓玛, 向飞, 等. 1981-2013年气候因子变化对西藏拉萨河径流的影响[J]. 冰川冻土, 2015,37(5):1 304-1 311.
[12]刘文丰, 徐宗学, 李发鹏, 等. 基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景[J]. 高原气象, 2014,33(1):26-36.
[13]YOU Q L, KANG S C, WU Y H, et al. Climate change over the Yarlung Zangbo River Basin during 1961-2005 [J]. Journal of Geographical Sciences, 2007,17(4):409-420
[14]ZHU X H, FRAEDRICH Klaus. Future climate in the Tibetan plateau from a statistical regional climate model [J]. Journal of Climate, 2013,26(24):10 125-10 138.
[15]洛珠尼玛, 王建群, 徐幸仪. 拉萨河流域水循环要素演变趋势分析[J]. 水资源保护, 2012,28(1):51-53.
[16]邱玲花, 彭定志, 胡林涓, 等. 基于MODIS和SRM的拉萨河流域融雪径流模拟研究[J]. 北京师范大学学报(自然科学版), 2013,49(2):152-156.
[17]杨志刚, 卓玛, 路红亚, 等. 1961-2010年西藏雅鲁藏布江流域降水量变化特征及其对径流的影响分析[J]. 冰川冻土, 2014,36(1):166-172.
[18]张圣微, 雷玉平, 姚琴, 等. 土地覆被和气候变化对拉萨河流域径流量的影响[J]. 水资源保护, 2010,26(2):39-44.
[19]刘晓婉, 徐宗学, 彭定志. 雅鲁藏布江流域NDVI与降水量时空分布特征及其相关性分析[J]. 中国农村水利水电, 2018(1):89-95.
[20]刘江涛, 徐宗学, 赵焕, 等. 1973-2016年雅鲁藏布江流域极端降水事件时空变化特征[J]. 山地学报, 2018,36(5):750-764.
[21]施彦, 韩力群, 廉小亲. 神经网络设计方法与实例分析[M]. 北京: 北京邮电大学出版社,2009.
[22]苑希民. 神经网络和遗传算法在水利科学领域的应用[M]. 北京: 中国水利水电出版社, 2002:80- 82.
[23]郭兵, 姜琳, 戈大专, 等. 全球气候变暖胁迫下的雅鲁藏布江流域植被覆盖度变化驱动机制探讨[J]. 热带亚热带植物学报, 2017,25(3):209-217.
[24]崔东文. 多隐层BP神经网络模型在径流预测中的应用[J]. 水文, 2013, 33(1):68-73.
PDF(6418 KB)

访问

引用

详细情况

段落导航
相关文章

/