基金
基于流域荷载均衡的喀斯特地区可利用水资源量研究;贵州省科技计划
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]张颖, 郝兴明, 花顶, 等. 潜在蒸散发估算的简化方法及其应用[J]. 干旱区研究, 2019,36(6):1 431-1 439.
[2]姜艳阳, 王文, 周正昊. MODIS MOD16 蒸散发产品在中国流域的质量评估[J]. 自然资源学报, 2017,32(3):517-528.
[3]VELPURI N M, SENAY G B, SINGH R K, et al. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET[J]. Remote Sensing of Environment, 2013,139:35-49.
[4]YANG X, YONG B, YIN Y, et al. Spatio-temporal changes in evapotranspiration over China using GLEAM_V3.0a products (1980-2014) [J]. Hydrology Research, 2018,49(5):1 330-1 348.
[5]李修仓, 姜彤, 温珊珊, 等. 珠江流域实际蒸散发的时空变化及影响要素分析 [J]. 热带气象学报, 2014,30(3):483-494.
[6]王利平, 文明, 宋进喜, 等. 1961-2014 年中国干燥度指数的时空变化研究 [J]. 自然资源学报, 2016,31(9):1 488-1 498.
[7]蒋翼, 周忠发, 张勇荣, 等. 喀斯特山区蒸散发的时空变异特征分析:以贵州省为例 [J]. 水利水电技术, 2019,50(9):53-61.
[8]温媛媛, 赵军, 王炎强, 等. 基于MOD16的山西省地表蒸散发时空变化特征分析[J]. 地理科学进展, 2020,39(2):255-264.
[9]肖进原. 贵州岩溶植被类型的卫片影像特征及分布解译[J]. 贵州地质, 1996(4):350-356.
[10]张萍. 浅谈贵州喀斯特石漠化防治 [J]. 中国水土保持, 2007(4):9-10.
[11]陈晓平, 张帆, 宋林华. 云南高原东南部喀斯特地区自然环境问题 [J]. 环境科学导刊, 1989(4):24-27.
[12]RUI H, BEAUDOING H. README Document for NASA GLDAS Version 2 Data Products[EB/OL]. http:∥disc.gsfc.nasa.gov. 2019-11-29.
[13]ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 [J]. Fao: Rome, 1998,300(9):D05109.
[14]MU Q, ZHAO M, RUNNING S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm [J]. Remote Sensing of Environment, 2011,115(8):1 781-1 800.
[15]ANDAM‐AKORFUL S, FERREIRA V, AWANGE J, et al. Multi‐model and multi‐sensor estimations of evapotranspiration over the Volta Basin, West Africa [J]. International Journal of Climatology, 2015,35(10):3 132-3 145.
[16]贺添, 邵全琴. 基于MOD16产品的我国2001-2010年蒸散发时空格局变化分析 [J]. 地球信息科学学报, 2014(6):979-988.
[17]杨江州, 周旭, 程东亚, 等. 贵州省不同地貌类型区的MOD16蒸散发变化特征[J]. 水土保持研究, 2019,26(2):216-222.
[18]黄瑾, 王文, 崔巍, 等. 云贵地区几种潜在蒸散发产品质量评估 [J]. 人民长江, 2019,50(12):73-79.
[19]HIRSCH R M, SLACK J R, SMITH R A. Techniques of trend analysis for monthly water quality data [J]. Water Resources Research, 1982,18.
[20]中国科学院《中国自然地理》委员会. 中国自然地理:气候[M].北京: 科学出版社, 1984.
[21]PENMAN L H. Natural Evaporation from Open Water, Bare Soil and Grass [J]. Proceedings of the Royal Society of London, 1948,193(1032):120-145.
[22]BOUCHET R J. Evapotranspiration réelle et potentielle, signification climatique [J]. IAHS Publ, 1963,62:134-142.
[23]GAO G, CHEN D, XU C Y, et al. Trend of estimated actual evapotranspiration over China during 1960-2002 [J]. Journal of Geophysical Research: Atmospheres, 2007,112(D11).
[24]BUDYKO M I. The heat balance of the earth's surface [J]. Soviet Geography, 1961,2(4):3-13.
[25]WANG L, CHEN W, ZHOU W. Assessment of future drought in Southwest China based on CMIP5 multimodel projections [J]. Advances in Atmospheric Sciences, 2014,31(5):1 035-1 050.
[26]中国科学院《中国自然地理》委员会. 中国自然地理总论[M].北京: 科学出版社, 1985.
[27]BISHT G, VENTURINI V, ISLAM S, et al. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days [J]. Remote Sensing of Environment, 2005,97(1):52-67.
[28]HACHEM S, DUGUAY C R, ALLARD M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain [J]. Cryosphere, 2012,6(1):51-69.
[29]LAI Y J, LI C F, LIN P H, et al. Comparison of MODIS land surface temperature and ground-based observed air temperature in complex topography[J]. International Journal of Remote Sensing, 2012,33(24):7 685-7 702.