
基于分数阶PID控制和粒子群算法的水电机组开机优化
张官祥, 罗红俊, 廖李成, 朱郅玮, 马龙, 张友江, 李超顺
基于分数阶PID控制和粒子群算法的水电机组开机优化
Optimization of Startup of Hydropower Units Based on Fractional PID Control and Particle Swarm Algorithm
水轮发电机组不同的开启策略会导致不同的水力过渡过程,针对水电站对水轮发电机组开机过程应简单可靠及对启动规律的要求,本文利用粒子群算法(PSO)对水电机组启动工况进行了优化研究。以国内某双机共尾水隧洞大型水电站为研究对象,考虑由转速超调量及转速ITAE指标构成的目标函数,对导叶一段及二段式开启规律与PID及分数阶PID组合的开机策略的参数进行优化,并进行过渡过程仿真实验。实验的结果表明,与其他开机策略相比,导叶两段式开启规律配合分数阶PID控制器,得到的最优目标函数值更小。蜗壳末端压力及尾水管压力最大值等过渡过程的动态性能更为优秀,能更快到达稳态。
Different start-up strategies of hydropower units will lead to different hydraulic transition processes. In view of the requirements of simple and reliable start-up process of hydropower units by hydropower stations and view of the requirements of simple and reliable start-up process of hydropower units by hydropower stations and the requirements of starting rules, this paper uses particle swarm optimization (PSO) to conduct an optimization study on the startup conditions of hydropower units. Taking a domestic large-scale hydropower station with dual generators and common tailrace tunnel as the research object, considering the objective function composed of the speed overshoot and the speed ITAE index, this paper optimizes the parameters of the start-up strategy of the combination of the first and second sections of the guide vane and the PID and fractional PID, and carries out the transition process simulation experiment. The experimental results show that, compared with other start-up strategies, the two-stage opening law of the guide vane combined with the fractional PID controller can obtain a smaller optimal objective function value. The dynamic performance of the transition process such as the pressure at the end of the volute and the maximum draft tube pressure is better, and it can reach the steady state faster.
开机策略 / PSO算法 / 水力过渡过程 / 分数阶PID控制 / ITAE {{custom_keyword}} /
start-up strategies / PSO algorithm / hydraulic transition / fractional PID control / ITAE {{custom_keyword}} /
表1 过渡过程仿真实验各项参数Tab.1 Various parameters of the transition process simulation experiment |
参数类型 | 参数值 | |
---|---|---|
水电机组 额定参数 | 转速n/(m3·s-1) | 107.10 |
流量Qr /(m3·s-1) | 547.80 | |
出力Pr /MW | 1 015.00 | |
水头Hr /m | 202.00 | |
导叶开度yr /(°) | 26.50 | |
启动工况 上下游水位 | 上游水位Hu /m | 825.21 |
下游水位Hd /m | 623.27 | |
调压室参数 | 底板高程/m | 561.00 |
断面积/m2 | 1 452.2 | |
阻抗孔面积/m2 | 45.36 | |
流入系数 | 0.60 | |
流出系数 | 0.80 | |
Suter变换参数 | | |
发电机及负载参数 | | |
导叶开启规律部分参数 | | |
PSO参数 | |
表2 引水系统分段管路参数Tab.2 Sectional pipeline parameters of water diversion system |
管道编号 | 长度/m | 等效直径/m | 面积/m2 | 发电综合水头损失系数 | 备注 |
---|---|---|---|---|---|
1 | 41.000 | 15.921 | 199.081 | 1.316 4×10-7 | 叠梁门段 |
2 | 285.490 | 10.998 | 94.999 | 2.018 2×10-8 | 上平段 |
3 | 213.550 | 10.200 | 81.713 | 1.804 1×10-8 | 上弯段—下平段 |
4 | 21.200 | 9.117 | 65.282 | 3.030 6×10-8 | 引水钢衬段 |
5 | 38.386 | 6.841 | 36.756 | 1.914 5×10-10 | 蜗壳段 |
6 | 13.329 | 8.636 | 58.575 | 1.805 2×10-10 | 尾水锥管 |
7 | 67.415 | 13.475 | 142.609 | 1.961 7×10-11 | 尾水肘管 |
8 | 87.970 | 17.147 | 230.922 | 2.146 8×10-9 | 尾水管扩散段 |
9 | 119.820 | 16.451 | 212.557 | 2.541 1×10-9 | 尾闸-尾调 |
10 | 15.790 | 25.000 | 490.874 | 8.192 4×10-10 | 尾调-尾水缓坡段 |
11 | 41.000 | 15.921 | 199.081 | 1.316 4×10-7 | 叠梁门段 |
12 | 304.560 | 10.998 | 94.999 | 1.919 7×10-8 | 上平段 |
13 | 213.550 | 10.200 | 81.713 | 1.804 1×10-8 | 上弯段—下平段 |
14 | 21.200 | 9.117 | 65.282 | 3.030 6×10-8 | 引水钢衬段 |
15 | 38.386 | 6.841 | 36.756 | 5.513 7×10-10 | 蜗壳段 |
16 | 13.329 | 8.636 | 58.575 | 1.805 2×10-10 | 尾水锥管 |
17 | 67.415 | 13.475 | 142.609 | 1.961 7×10-11 | 尾水肘管 |
18 | 87.970 | 17.147 | 230.922 | 2.006 8×10-9 | 尾水管扩散段 |
19 | 83.930 | 16.451 | 212.557 | 5.026 3×10-9 | 尾闸-尾调 |
20 | 25.000 | 16.451 | 212.557 | 8.192 4×10-10 | 尾调-尾水缓坡段 |
21 | 381.760 | 17.620 | 243.838 | 8.364 6×10-10 | 尾水缓坡段 |
22 | 125.000 | 18.092 | 257.077 | 3.965 4×10-10 | 尾水陡坡段 |
23 | 370.480 | 21.348 | 357.935 | 3.509 0×10-10 | 尾闸前 |
24 | 129.570 | 21.348 | 357.935 | 2.500 8×10-9 | 尾闸后 |
表3 单目标优化决策变量范围Tab.3 Single objective optimization decision variable range |
参数 | 边界 | | | | | | | | |
---|---|---|---|---|---|---|---|---|---|
| | 1.0 | 0.1 | 0.1 | 0.25 | 0.10 | 0.90 | - | - |
| 4.0 | 2.0 | 2.0 | 0.40 | 0.25 | 0.95 | - | - | |
| | 1.0 | 0.1 | 0.1 | 0.25 | 0.10 | 0.90 | 0 | 0.5 |
| 4.0 | 2.0 | 2.0 | 0.40 | 0.25 | 0.95 | 0.3 | 1.5 |
表4 不同开机策略全局最优参数与最优目标函数值Tab.4 Global optimal parameters and optimal objective function values for different start-up strategies |
规律 | | | | | | | | | |
---|---|---|---|---|---|---|---|---|---|
1段式PID | 3.579 | 0.812 | 1.170 | 0.268 | - | 0.917 | - | - | 1.777 |
1段式FOPID | 1.102 | 0.945 | 1.554 | 0.255 | - | 0.915 | 0.183 | 1.105 | 1.686 |
2段式PID | 2.979 | 0.142 | 0.675 | 0.322 | 0.207 | 0.906 | - | - | 0.453 |
2段式FOPID | 1.474 | 0.626 | 1.807 | 0.291 | 0.224 | 0.900 | 0.081 | 0.967 | 0.427 |
表5 不同开机策略过渡过程指标Tab.5 Transition process indicators of different start-up strategies |
规律 | ITAE | 超调 | | | | |
---|---|---|---|---|---|---|
一段式PID | 215.577 9 | 0.044 3 | 47.28 | 364.642 7 | 82.696 4 | 625.218 9 |
一段式FOPID | 287.247 6 | 0.023 9 | 50.78 | 270.680 7 | 61.060 7 | 625.197 4 |
两段式PID | 168.322 7 | 0.014 7 | 61.70 | 305.981 0 | 73.643 2 | 625.519 4 |
段式FOPID | 170.420 7 | 0.007 5 | 38.38 | 269.504 6 | 61.060 7 | 625.343 4 |
1 |
陈帝伊. 水轮机调节系统[M]. 北京:中国水利水电出版社,2019:15-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张俊娜. 粒子群优化算法的改进与应用[D]. 西安:长安大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王跃. 抽水蓄能机组调速器智能启动策略研究[J]. 电网与清洁能源,2013,29(11):123-125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陈红,嵇阳,唐立模,等. 基于PID参数自整定的河工模型尾门控制[J]. 水利水运工程学报,2018(1):27-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
陈嘉谋. 水轮机调节系统计算机仿真[M]. 北京:水利电力出版社,1993:25-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
程远楚. 水轮机自动调节[M]. 北京:中国水利水电出版社,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李俊益,陈启卷. 水轮机调节系统Hopf分岔分析及其PID控制[J]. 武汉大学学报(工学版),2018,51(5):451-458.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
赵华东. 基于改进PSO的数字分数阶PID控制器优化及应用研究[D]. 青岛:山东科技大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
齐柳. 基于ITAE指标等概率分布的PID参数整定[D]. 南昌:南昌航空大学,2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
康玲,叶鲁卿. 水电机组闭环开机控制策略与仿真研究[J]. 水力发电学报,2000(01):55-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
汪赞斌. 抽蓄储能-风-光微电网建模与优化控制研究[D]. 武汉:华中科技大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
魏静萱. 解决单目标和多目标优化问题的进化算法[D]. 西安:西安电子科技大学,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |