
基于数据驱动和ELM的水电机组振动区划分
席慧, 郑阳, 安宇晨, 游仕豪, 陈盛, 陈启卷
基于数据驱动和ELM的水电机组振动区划分
Data-driven and ELM-based Vibration Region Partition for the Hydroelectric Generating Sets
传统的水电机组振动区划分方法是通过变负荷试验,采用国标规定的限值划分振动区,没有考虑机组型号和运行环境导致的阈值差异。将水电机组状态监测系统的稳定运行数据应用到振动区划分,提出了基于数据驱动和极限学习机(ELM)的水电机组振动区划分模型,筛选能够表征机组稳定性状态的测点,根据全工况稳定性状态样本数据对振动区划分模型进行分类训练,进而实现机组振动区高效、精确划分。实际应用表明,基于数据驱动和ELM的水电机组振动区划分模型,具有快速、高效获取在线状态监测系统有效数据的优点,其振动区划分结果与传统方法相比,覆盖工况区间广,可靠性高。
The traditional method of vibration division for hydropower units adopts the limit value stipulated by national standard through variable load test, without considering the difference of threshold value caused by unit type and operation environment. Based on the data-driven and limit learning machine (ELM), a model for the vibration division of hydroelectric generating units is proposed, in which the stable operation data of hydroelectric generating units are applied to the vibration division, based on the data of steady state under all working conditions, the model of vibration region division is trained, and then the efficient and accurate division of vibration region is realized. The practical application shows that the vibration zoning model based on data-driven and ELM has the advantages of fast and efficient acquisition of effective data of on-line condition monitoring system, the wide coverage range and high reliability are of great significance to guide the actual operation of power plants.
数据驱动 / 极限学习机 / 在线监测 / 振动区划分 {{custom_keyword}} /
data driven / extreme learning machine / vibration region partition / on-line monitoring {{custom_keyword}} /
表1 测点超标次数排序表Tab.1 Ranking table of the number of outliers of test points |
排序 | 测点名称 | 次数 |
---|---|---|
1 | 定子机架垂直振动 | 329 040 |
2 | 水导X向摆度 | 258 751 |
3 | 顶盖X向水平振动 | 144 156 |
4 | 顶盖Y向水平振动 | 19 260 |
5 | 下导X向振动 | 240 |
6 | 下导Y向振动 | 240 |
7 | 顶盖垂直振动 | 145 |
8 | 蜗壳进口压力脉动 | 98 |
9 | 水导Y向摆度 | 32 |
表2 ELM算法故障识别结果Tab.2 ELM Algorithm fault identification results |
故障类型 | 分类结果 | 分类准确率/% | |||
---|---|---|---|---|---|
正常 | 内圈故障 | 外圈故障 | 滚动体故障 | ||
正常 | 40 | 0 | 0 | 0 | 100 |
内圈故障 | 0 | 40 | 0 | 0 | 100 |
外圈故障 | 0 | 1 | 39 | 0 | 97.5 |
滚动体故障 | 0 | 0 | 2 | 38 | 95 |
表3 100次独立实验准确率 (%)Tab.3 100 independent experiments |
最大值 | 平均值 | 最小值 | |
---|---|---|---|
训练集 | 94.71 | 93.71 | 91.64 |
测试集 | 93.17 | 90.63 | 88.55 |
1 |
高菘,杨虎,付恩狄,等.基于生物地理学算法的水电机组PID参数优化[J].中国农村水利水电,2020(10):242-247..
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张长伟,徐成劢,王卫玉,等.水电机组振动信号的自适应VMD分析[J].中国农村水利水电,2019(6):159-162.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘东,王昕,黄建荧,等.基于小波变换与SVD的水电机组振动信号特征提取研究[J].中国农村水利水电,2018(12):169-172.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
翟晓阳,韦家庆,韦刚,等.广西乐滩水电站机组稳定性试验分析[J].水电站机电技术,2019,42(7):18-20,36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
夏琳,陈启卷.某电厂混流式机组振动区试验及机组运行分区[J].水电能源科学,2015,33(2):172-175.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
陈国青,杜景琦,梁仕斌,等.基于小波分析及振动信号灰度矩的水电机组振动区建立方法研究[J].科学技术与工程,2016,16(35):215-219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
樊玉林,张飞,付婧,等.基于短时傅里叶变换的水轮机涡带工况识别[J].人民长江,2016,47(8):85-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
娄强,王卫玉,陈启卷,等.基于在线监测数据的水轮机运行区精细划分[J].水力发电学报,2018,37(10):96-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
严耀亮,孙伟.大数据时代基于全工况的机组稳定性分析[J].水电与抽水蓄能,2017,3(3):55-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
胡庆国,田学泽,何忠明.基于遗传算法优化极限学习机的绿色建筑投资估算方法[J].建筑经济,2020,41(10):125-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
徐肖遥,张鹏飞,蒋剑.基于EMD-PSO-ELM算法的大坝变形预测研究[J].软件导刊,2020,19(9):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
于海洋.在线预测的极限学习机方法研究[D].长春:吉林大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
徐肖遥,张鹏飞,蒋剑.基于EMD-PSO-ELM算法的大坝变形预测研究[J].软件导刊,2020,19(9):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
陈鹏,赵小强,朱奇先.基于VMD-MPE-KPCA特征提取与MRVM相混合的滚动轴承故障诊断方法[J].兰州理工大学学报,2020,46(5):92-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |