
基于多重分形与BGSA-PNN的水电机组振动信号状态识别
安宇晨, 郑阳, 陈启卷, 席慧, 闫懂林, 游仕豪
基于多重分形与BGSA-PNN的水电机组振动信号状态识别
State Identification of Hydropower Unit Vibration Signal Based on Multi-fractal and BGSA-PNN
受机械因素、电气因素和水力因素的耦合作用,水电机组振动信号表现出明显的非线性、非平稳特性,是一类典型的分形信号。基于此,提出了一种基于多重分形与二进制引力搜索算法优化概率神经网络(PNN)的水电机组信号特征提取方法,通过多重分形分析方法提取信号特征,使用二进制引力搜索算法进行特征降维,将降维后的特征向量输入PNN识别 ,并与降维前的特征向量以及使用EMD模糊熵提取的特征向量进行对比。结果表明,所提方法能够准确地提取机组振动信号特征,提高机组状态识别准确率,为提高电站的安全、稳定运行提供理论依据。
Affected by the coupling of mechanical, electrical and hydraulic factors, the vibration signal of hydropower unit exhibits obvious nonlinear and non-stationary characteristics, which is a typical fractal signal. This paper proposes a signal feature extraction method for hydropower units based on multi-fractal and binary gravity search algorithm to optimize the probabilistic neural network (PNN). The signal feature is extracted by the multi-fractal analysis method, and the binary gravity search algorithm is used to reduce the dimension of the feature. The vector input is recognized by PNN and compared with the feature vector before dimension reduction and the feature vector is extracted by using EMD fuzzy entropy. The results show that the method proposed in this paper can accurately extract the characteristics of unit vibration signals, improve the accuracy of unit status identification, and provide a theoretical basis for improving the safe and stable operation of the power station.
水电机组 / 多重分形分析 / 二进制引力搜索算法 / 概率神经网络 / 状态识别 {{custom_keyword}} /
hydropower unit / multi-fractal analysis / binary gravity search algorithm / probabilistic neural network / state identification {{custom_keyword}} /
表1 部分轴承信号特征数据Tab.1 Feature data of the partial bearing signal |
状态 | 样本 编号 | 多重分形特征 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | ||
正常 | 1 | 0.880 | 1.371 | 0.491 | -0.382 | 1.015 | 0.136 | -0.356 | 0.510 | 0.128 | 0.084 |
2 | 0.891 | 1.403 | 0.512 | -0.340 | 1.016 | 0.125 | -0.387 | 0.581 | 0.241 | 0.060 | |
3 | 0.884 | 1.344 | 0.460 | -0.572 | 1.015 | 0.131 | -0.329 | 0.548 | -0.024 | 0.095 | |
内圈 故障 | 51 | 0.591 | 1.412 | 0.821 | 0.078 | 1.054 | 0.464 | -0.358 | 0.099 | 0.177 | 0.094 |
52 | 0.593 | 1.472 | 0.880 | -0.032 | 1.058 | 0.466 | -0.414 | 0.112 | 0.080 | 0.093 | |
53 | 0.619 | 1.468 | 0.849 | -0.098 | 1.060 | 0.440 | -0.409 | 0.130 | 0.031 | 0.093 | |
外圈 故障 | 101 | 0.828 | 1.380 | 0.552 | -0.331 | 1.025 | 0.196 | -0.355 | 0.394 | 0.063 | 0.074 |
102 | 0.841 | 1.400 | 0.559 | -0.295 | 1.024 | 0.183 | -0.376 | 0.446 | 0.152 | 0.064 | |
103 | 0.837 | 1.530 | 0.693 | -0.421 | 1.026 | 0.189 | -0.504 | 0.442 | 0.021 | 0.086 | |
滚动体 故障 | 151 | 0.693 | 1.516 | 0.823 | -0.148 | 1.049 | 0.356 | -0.467 | 0.181 | 0.033 | 0.094 |
152 | 0.724 | 1.427 | 0.703 | 0.006 | 1.042 | 0.317 | -0.386 | 0.171 | 0.177 | 0.076 | |
153 | 0.732 | 1.497 | 0.765 | -0.070 | 1.047 | 0.314 | -0.451 | 0.164 | 0.094 | 0.089 |
表2 基于轴承数据的不同方法的识别准确度与计算时间统计Tab.2 Statistics of different Recognition accuracy and calculation time of different methods of bearing data |
方法 | 最小准确度/% | 最大准确度/% | 平均准确度/% | 时间/s |
---|---|---|---|---|
MFDFA特征 | 92.5 | 100 | 98.8 | 2.12 |
BGSO-PNN降维的FDFA特征 | 95.0 | 100 | 99.0 | 1.80 |
图6 3个工况下水导轴承X向摆度的多重分形谱图Fig.6 Multifractal spectra of X-direction swing of water guide bearing under three working conditions |
表3 部分水导轴承X向摆度的特征数据Tab.3 Feature data of the partial water guide bearing X-direction swing waveform |
状态 | 样本 编号 | 多重分形特征 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | ||
稳定运行区 | 1 | 0.968 | 1.063 | 0.094 | -0.048 | 1.004 | 0.035 | -0.059 | 0.873 | 0.825 | 0.002 |
2 | 0.956 | 1.129 | 0.173 | -0.166 | 1.009 | 0.052 | -0.121 | 0.854 | 0.687 | 0.003 | |
3 | 0.956 | 1.137 | 0.182 | -0.175 | 1.009 | 0.053 | -0.129 | 0.852 | 0.677 | 0.003 | |
小负荷工况区 | 51 | 0.960 | 1.082 | 0.122 | -0.056 | 1.004 | 0.044 | -0.078 | 0.819 | 0.763 | 0.003 |
52 | 0.963 | 1.096 | 0.133 | -0.131 | 1.004 | 0.041 | -0.092 | 0.842 | 0.710 | 0.003 | |
53 | 0.970 | 1.087 | 0.117 | -0.143 | 1.003 | 0.033 | -0.084 | 0.864 | 0.721 | 0.002 | |
涡带工况区 | 101 | 0.886 | 1.191 | 0.305 | 0.011 | 1.010 | 0.124 | -0.181 | 0.492 | 0.503 | 0.024 |
102 | 0.874 | 1.225 | 0.351 | 0.006 | 1.011 | 0.137 | -0.214 | 0.422 | 0.428 | 0.031 | |
103 | 0.872 | 1.307 | 0.435 | -0.232 | 1.014 | 0.142 | -0.293 | 0.499 | 0.267 | 0.032 |
图7 电站实测数据的分类准确度随迭代次数的变化曲线Fig.7 Classification accuracy curve of the measured data of the power station with iterations |
表4 基于实测数据的不同方法的识别准确度与计算时间统计Tab.4 Statistics of Recognition accuracy and calculation time of different methods of the measured data |
方法 | 最小准确度/% | 最大准确度/% | 平均准确度/% | 时间/s |
---|---|---|---|---|
MFDFA特征 | 76.7 | 96.7 | 86.0 | 2.48 |
BGSO-PNN降维MFDFA特征 | 83.3 | 100.0 | 92.9 | 2.02 |
EMD模糊熵 | 60.0 | 93.3 | 79.9 | 2.87 |
1 |
胡晓,王昕,黄建荧,等.基于变分模态分解和复杂度分析的水电机组振动信号特征提取[J].中国农村水利水电,2019(1):188-192.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
陈子建,王振涛,许杰彬.基于幅值域参数的船舶液压系统故障诊断研究[J].船舶工程,2016,38(S2):101-104,109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
蒋文君,胡晓,张培,等.基于EEMD近似熵的水电机组振动信号特征提取[J].水力发电学报,2020,39(6):18-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
卢娜,张广涛,姚泽,等.基于CL3-AMW与LTSA的水电机组振动故障特征提取研究[J].水力发电学报,2020,39(2):103-111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
罗红玲,陈启卷,王卫玉,等.基于ESN延拓与HMM修正的端点效应处理及其应用[J].中国农村水利水电,2020(10):228-235.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
郭鹏程,孙龙刚,李辉,等.基于多重分形谱和改进BP神经网络的水电机组振动故障诊断研究[J].水力发电学报,2014,33(3):299-305.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
李辉,李欣同,贾嵘,等.基于分形和概率神经网络的水电机组故障诊断[J].水力发电学报,2019,38(3):92-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈龙,邵梦博,孟相旭,等.滚动轴承振动信号的多重分形特性分析[J].轴承,2020(9):43-49,56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
林近山,陈前.基于多重分形去趋势波动分析的齿轮箱故障特征提取方法[J].振动与冲击,2013,32(2):97-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
裴峻峰,严安,彭剑,等.声信号的MFDFA和SFLA-SVM算法的往复泵故障诊断[J].机械设计与制造,2020(4):199-203,207.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
唐利平,刘海雄.刀具磨损状态特征参数提取与识别方法研究[J].组合机床与自动化加工技术,2019(10):10-14,19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李兆飞,柴毅,李华锋.多重分形去趋势波动分析的振动信号故障诊断[J].华中科技大学学报(自然科学版),2012,40(12):5-9,17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
李鹏. 多尺度分析方法在旋转机械状态监测中的应用研究[D].合肥:中国科学技术大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
朱云博,冯广斌,孙华刚,等.基于多重分形与SVM的齿轮箱故障诊断研究[J].机械传动,2012,36(6):99-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
RashediEsmat, Nezamabadi-pourHossein, SaryazdiSaeid. BGSA: binary gravitational search algorithm[J]. Natural Computing,2010,9(3).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张志文,刘军,周冠东,等.基于改进二进制万有引力算法的含DG配电网故障定位[J].电力系统及其自动化学报,2018,30(4):30-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
蒋鹏程,汤占军,刘萍兰.基于引力搜索算法的局部遮阴下光伏系统最大功率点跟踪算法研究[J].化工自动化及仪表,2020,47(3):226-230,283.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王小川,史峰,郁磊,等.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2013:201-206.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |