
一体化超声波多层测流设备在引洮灌区中的研究与应用
郭天德, 焦小成, 李文新, 程焱钊
一体化超声波多层测流设备在引洮灌区中的研究与应用
Application of Integrated Multi-layer Ultrasonic Flow Measurement Equipment in Irrigation Area of Taohe River Diversion Project
基于传统明渠测流方法中存在的误差大、测量结果不准确、测量方法复杂不利于推广等问题,针对明渠测流自身的特点,结合引洮供水工程智能水量计控系统建设项目,系统研究了一种基于断面平均流速法的超声波多层测流技术,创新性采用了一体化整体封装设计保证了测流技术的稳定性和精确度。着重介绍了超声波多层测流技术的计算原理、设计结构及工程应用实例。通过将研究成果应用于引洮灌区明渠计量工作中,效果良好。
Based on the problems existing in traditional open channel flow measurement methods, such as large error, inaccurate measurement results, complex measurement method, which is not conducive to popularization, and in view of the characteristics of open channel flow measurement, combined with the construction project of intelligent water metering and control system of Taohe water supply project, a rectangular multi-layer ultrasonic flow measurement technology based on cross-section average velocity method is systematically studied, and the integrated whole package is adopted innovatively. The design ensures the stability and accuracy of flow measurement technology. The calculation principle, design structure and engineering application examples of rectangular multi-layer ultrasonic current measurement technology are emphatically introduced. Through the application of the research results to the open channel measurement in Taohe Irrigation Area, the application effect is good.
超声波 / 多层测流 / 积算原理 {{custom_keyword}} /
ultrasonic wave / multi-layer flow measurement / accumulation principle {{custom_keyword}} /
表1 平均流速实验测试数据Tab.1 Experimental test data of average velocity |
实验水位/m | 实验流速/(m·s-1) | y/h | 水层平均流速/(m·s-1) |
---|---|---|---|
0.98 | 0.073 5 | 0.2 | 0.065 2 |
0.4 | 0.076 6 | ||
0.6 | 0.079 1 | ||
0.8 | 0.080 0 | ||
1.0 | 0.081 4 | ||
0.36 | 0.157 6 | 0.2 | 0.132 9 |
0.4 | 0.154 7 | ||
0.6 | 0.158 6 | ||
0.8 | 0.160 2 | ||
1.0 | 0.164 6 | ||
0.63 | 0.239 2 | 0.2 | 0.217 1 |
0.4 | 0.243 7 | ||
0.6 | 0.247 5 | ||
0.8 | 0.246 1 | ||
1.0 | 0.237 7 |
表2 实验测试数据Tab.2 Experimental test data |
实验水位/m | 实验流量/(m³·h-1) | 测量流量/(m³·h-1) | 相对误差/% |
---|---|---|---|
0.34 | 151 | 148 | -1.99 |
0.36 | 168 | 164 | -2.38 |
0.38 | 189 | 192 | 1.59 |
0.40 | 210 | 215 | 2.38 |
0.42 | 232 | 238 | 2.59 |
0.44 | 251 | 250 | -0.40 |
0.46 | 267 | 263 | -1.50 |
0.48 | 288 | 295 | 2.43 |
0.50 | 312 | 321 | 2.88 |
0.52 | 331 | 341 | 3.02 |
0.54 | 349 | 355 | 1.72 |
0.56 | 367 | 376 | 2.45 |
0.58 | 388 | 396 | 2.06 |
0.60 | 412 | 422 | 2.43 |
0.62 | 426 | 437 | 2.58 |
1 |
刘鸿涛,于明舟,龙昱帆,等. 灌区水量计量的方法与应用[J]. 东北水利水电,2019(9):21-24,59,72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
许苗苗,周义仁,李浩. 便携式矩形渠道自动测流装置的研究[J]. 中国农村水利水电,2016(1):114-116,121.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
胡春宏,倪晋仁. 矩形明渠槽中断面紊流流速分布规律的初步研究[J]. 水利水运科学研究,1988(2):27-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘香坤. 浅谈超声波测流技术在工程中的应用[J]. 中国水运,2019(6):93-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
郭磊,梅林,邱静,等. 灌区计量率定物理试验研究方法探析及应用[J]. 水利信息化,2020(1):50-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李业彬,陈炳新,王国新,等. 水利部水资源司.取水计量技术导则:GB/T 28714-2012 [S]. 北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2012:2-3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
吴振峰,霍志丽. 超声波水位流量在灌区的应用[J]. 节水灌溉,2009(11):68-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |