
基于天气预报信息的参考作物需水量预报研究
白依文, 鲁梦格, 程浩楠, 严冬, 孙怀卫
基于天气预报信息的参考作物需水量预报研究
Research on the Reference Crop Evapotranspiration Forecast Based on Weather Forecast Information
获得作物需水信息是农业灌溉管理与水资源优化配置的基础。为探索利用公共天气预报信息进行作物需水预测,研究尝试以PM公式和HS公式为基础,将天气预报信息进行定量转化后预测参考作物需水量,以期解决典型地区参考作物需水量预报难题。通过以武汉市为典型研究区,收集了武汉站2020年3月16日至2020年4月15日的每日对未来七天的天气预报数据,使用天气预报数据与PM公式和HS公式得出的预报值与使用历史监测数据和PM公式采用实测数据得出的标准值进行对比并对本文使用的方法进行了验证。结果表明,不同预报期内,预报值与标准值有一致的变化趋势,两种方法在1~2 d预报期的MAE平均值分别为0.69和0.675 mm/d;RMSE平均值分别为0.91和0.905 mm/d,基本满足需水量精度要求,而随着预报期的增加准确性在降低;两种方法的对比显示,HS法的相关系数总是相对较高且预报后期比PM法稳定,PM主要误差是由实际日照时数导致。当实际日照时数预报精度较差时推荐使用HS法,此方法具有良好的物理基础并且数据容易获取。
Obtaining crop water requirement information is the basis of agricultural irrigation management and optimal allocation of water resources. In order to explore the use of public weather forecast information to predict reference crop evapotranspiration, this paper is an attempt to use PM model and HS model as the basis for quantitatively transforming weather forecast information to predict reference crop evapotranspiration so as to solve the problem of water demand forecast in typical areas. By using Wuhan as the typical study area, the daily forecast data of Wuhan Station from March 16, 2020, to April 15, 2020, daily for seven days in the future are collected. The results show that the predicted value and the standard value have the same trend in different forecast period, MAE of the two methods in 1~2 days forecast periods are 0.69 and 0.76 mm/d, RMSE are 0.91 and 0.905 mm/d respectively, which basically meet the precision requirements of water demand, while with the increase of forecast period, the accuracy is decreasing. The comparison between the two methods shows that the correlation coefficient of HS is always higher than that of PM and the prediction during later period is more stable. The main PM error is caused by the actual sunshine hours. HS method is recommended when the prediction accuracy of actual sunshine hours is poor. This method has good physical basis and data is easy to obtain.
参考作物腾发量 / 公共天气预报 / Penman-Monteith法 / Hargreaves-Samani法 {{custom_keyword}} /
reference crop evapotranspiration / public weather forecast / Hargreaves-Samani / Penman-Monteith {{custom_keyword}} /
表1 天气预报转换参数Tab.1 Parameters transformed form weather forecast |
PM变量 | 天气预报 | 转换变量 |
---|---|---|
R n | 天气类型 | 实际日照时数 |
U 2 | 风力等级 | 10m高度风速 |
e a | 最低温度 | 假设为露点温度 |
表2 天气类型量化指标表Tab.2 Quantitative indicators of weather type |
天气类型 | 晴天 | 晴转多云 | 多云 | 阴天 | 雨天 |
---|---|---|---|---|---|
n/N | 0.9 | 0.7 | 0.5 | 0.3 | 0.1 |
表3 风力等级量化指标表Tab.3 Quantitative indicators of wind level |
风力 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
u 10/(m·s-1) | 0.1 | 1.0 | 2.0 | 4.0 | 7.0 | 9.0 | 12.0 |
u 2/(m·s-1) | 0.1 | 0.7 | 1.5 | 3.0 | 5.2 | 6.7 | 9.0 |
表4 武汉站参数预报统计评价指标结果Tab.4 Statistical evaluation index of parameter forecast at Wuhan Station |
预报期/d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
最高温度 | r | 0.86 | 0.87 | 0.87 | 0.86 | 0.87 | 0.86 | 0.75 |
RMSE/℃ | 2.74 | 2.66 | 2.78 | 2.71 | 2.78 | 3.05 | 3.51 | |
MAE/℃ | 1.54 | 1.91 | 2.20 | 2.06 | 2.19 | 2.43 | 3.02 | |
最低温度 | R | 0.72 | 0.69 | 0.68 | 0.65 | 0.73 | 0.75 | 0.73 |
RMSE/℃ | 2.64 | 2.73 | 3.02 | 3.22 | 2.86 | 2.77 | 2.81 | |
MAE/℃ | 2.02 | 2.14 | 2.37 | 2.40 | 2.16 | 2.21 | 2.15 | |
风速 | R | 0.75 | 0.77 | 0.77 | 0.67 | 0.61 | 0.59 | 0.46 |
RMSE/(m·s-1) | 1.79 | 1.88 | 1.95 | 1.69 | 1.73 | 1.64 | 1.17 | |
MAE/(m·s-1) | 1.45 | 1.53 | 1.57 | 1.38 | 1.38 | 1.38 | 0.87 | |
日照实数 | R | 0.26 | 0.17 | 0.25 | 0.25 | 0.26 | 0.19 | 0.06 |
RMSE/h | 4.25 | 4.26 | 4.10 | 4.31 | 4.23 | 4.77 | 4.64 | |
MAE/h | 3.48 | 3.51 | 3.35 | 3.58 | 3.44 | 3.93 | 3.40 | |
实际水汽压 | R | 0.68 | 0.67 | 0.63 | 0.53 | 0.58 | 0.65 | 0.70 |
RMSE/kPa | 0.27 | 0.27 | 0.28 | 0.34 | 0.30 | 0.27 | 0.26 | |
MAE/kPa | 0.19 | 0.19 | 0.20 | 0.22 | 0.20 | 0.18 | 0.18 |
表5 武汉站ET 0预报统计评价指标结果Tab.5 Statistical evaluation index of ET 0 at Wuhan Station |
预报期/d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | M | |
---|---|---|---|---|---|---|---|---|---|
PM | r | 0.70 | 0.65 | 0.45 | 0.45 | 0.43 | 0.49 | 0.26 | 0.49 |
RMSE/℃ | 0.96 | 0.86 | 1.06 | 1.10 | 1.08 | 1.11 | 1.23 | 1.06 | |
MAE/℃ | 0.73 | 0.65 | 0.79 | 0.91 | 0.86 | 0.92 | 0.91 | 0.82 | |
HS | r | 0.72 | 0.71 | 0.53 | 0.48 | 0.50 | 0.63 | 0.48 | 0.58 |
RMSE/℃ | 0.95 | 0.86 | 0.96 | 1.10 | 1.09 | 1.11 | 1.25 | 1.05 | |
MAE/℃ | 0.79 | 0.73 | 0.80 | 0.95 | 0.97 | 0.98 | 1.10 | 0.90 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
蔡甲冰,刘钰,雷廷武,等. 根据天气预报估算参照腾发量[J]. 农业工程学报, 2005(11): 19-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张倩,段爱旺,王广帅,等. 基于天气预报的参照作物腾发量中短期预报模型研究[J]. 农业机械学报, 2015, 46(5):107-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
罗玉峰,李思,彭世彰,等. 基于气温预报和HS公式的参考作物腾发量预报[J]. 排灌机械工程学报, 2013,31(11):987-992.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
晏成明,刘梦,罗玉峰 .基于公共天气预报的广东青年运河灌区参考作物腾发量预报方法比较[J].排灌机械工程学报, 2018,36( 8):38-743.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
刘钰,蔡林根. 参照腾发量的新定义及计算方法对比[J]. 水利学报, 1997(6):28-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
赵琪,罗玉峰, 彭世彰, 等. 基于天气预报和Penman-Monteith公式的短期逐日参考作物腾发量预报[J]. 节水灌溉,2014(1):1-4,8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘 梦,罗玉峰,汪文超,等. 基于天气预报的漳河灌区参考作物腾发量预报方法比较[J]. 农业工程学报,2017,33(19):156-162.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
孙怀卫,严冬,陈皓锐,等. 参考作物腾发量的GARCH类模型模拟与比较[J]. 农业工程学报,2015,31(7):131-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
江显群,陈武奋,邵金龙 .基于公共天气预报的参考作物腾发量预报[J].排灌机械工程学报,2019,37(12):1 077-1 081.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
崔远来,马承新,沈细中, 等. 基于进化神经网络的参考作物腾发量预测[J]. 水科学进展,2005(1):76-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
徐俊增,彭世彰,张瑞美, 等. 基于气象预报的参考作物蒸发蒸腾量的神经网络预测模型[J]. 水利学报,2006(3):376-379.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
中国气象总局. 地面气象观测标准[M]. 北京:气象出版社,2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
杨洋. 基于公共天气预报的参考作物腾发量预报模型比较[D]. 武汉:武汉大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |