
结合三维图形技术的综合法泄漏检测系统在中低压输水管道上的应用研究
朱智伟
结合三维图形技术的综合法泄漏检测系统在中低压输水管道上的应用研究
Research on the Application of the Combined Multiple Leak Detection System Based on Three- dimensional Graphic Technology on Medium and Low Pressure Water Transportation Pipeline
在中低压输水管道输送过程中,压力信号不可避免地受到例如水泵和其他外界因素带来的噪音的影响,泄漏所产生的压力波动易被高频率噪音所覆盖;另外,因管道压力较小而导致压力波衰减无法传播至管道两端从而对泄漏定位产生影响。因此,中低压管道对泄漏检测系统的性能有着更为严苛的要求。通过分析对比传统泄漏检测系统与结合三维图形的综合法泄漏检测系统原理差异,以及综合法对压力信号进行的降噪处理和对流量差变化的精确计算,系统可得到降噪后的压力波动信号以及准确的流量波动情况。此方法可提高中低压输水管道上对泄漏检测的准确性以及可靠性,是未来中低压输水管道泄漏检测的主要选择趋势。
In the process of the medium/low pressure water pipeline transportation, the pressure signal will inevitably be affected by the noise brought by pumps and other external factors, resulting in the pressure fluctuation caused by leak is covered by high frequency noise. In addition, as the pressure of the pipeline is very low, the pressure ware cannot propagate to both ends of the pipeline because attenuation, which has an impact on the leak location. For all the above factors, the performance of the leak detection system used in the medium/low pressure pipeline should be highly demanding. Through an analysis and comparison of the differences between the traditional leakage detection system and the comprehensive leakage detection system combined with three-dimensional graphics, as well as the noise reduction processing of the pressure signal and the accurate calculation of the flow difference change, the comprehensive method system can obtain the pressure fluctuation signal and the accurate flow fluctuation curve after noise reduction. This method can improve the accuracy and reliability of leakage detection on medium/low pressure water transmission pipeline, the comprehensive leak detection system will be the main choice of the medium/low pressure pipeline in the future.
综合法泄漏检测 / 三维图形技术 / 中低压管道 {{custom_keyword}} /
leak detection system / three-dimensional graphics technology / medium and low pressure pipeline {{custom_keyword}} /
1 |
郭新蕾,马慧敏,李甲振,等.管道系统漏损控制技术进展[J].水利水电技术,2018,49(6):65-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
刘杰辉,嵇尚尚,王桂梅,等.供水管道泄漏点定位研究[J].给水排水,2018,54(6):119-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
谢丰权,刘广贺,杜新民.基于光纤传感技术的供水管网漏损实时监测[J].净水技术,2020,39(11):164-168.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
潘莹.供水管道泄漏微弱信号采集系统设计探讨[J].黑龙江水利科技,2020,48(2):121-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
杨开林,郭新蕾.管道系统泄漏检测的全频域法[J].水利水电科技进展,2008(3):40-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
刘志勇,刘梅清,蒋劲,等.基于瞬变流频率响应分析的输水管道泄漏检测[J].水利学报,2015,46(11):1 352-1 359.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
陈世云.输油管道泄漏检测技术研究及应用[D].石家庄:河北科技大学,2015:4.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
郭希健,曹峥,宣炳蔚,等.泄漏管道中的压力波传播规律研究[J/OL].水利水电技术(中英文):.2021-03-26]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
欧海军.深埋供水管道泄漏信号地面监测试验研究[J].吉林水利,2019(10):13-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
国家能源局. 液体管道的计算监测:SY/T6826-2011 [S]. 北京:石油工业出版社,2011:9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
孙泉. 基于城市供水SCADA系统的管网泄漏检测及其定位研究[D].长沙:湖南大学,2008:7-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
丁冬,杨成禹.基于遗传算法优化的神经网络在长输管道泄漏检测系统中的应用[J]. 长春理工大学学报(自然科学版),2015(6):136-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
张东领,王树清,李华军.基于压力波的海底管道泄漏定位技术的研究[J].中国海洋大学学报,2006,36():189-192
增刊II
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
蔡正敏,吴浩江,黄上恒.小波变换在管道泄漏在线监测中去噪的应用[J].机械科学与技术,2001,20(2):253-256.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
王俊岭,吴宾,聂练桃,等.基于神经网络的管网漏失定位实例研究[J].水利水电技术,2019,50(04):47-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
蔺小林,蒋耀林.现代数值分析[M].北京:国防工业大学出版社,2004:278-284.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |