
基于MODIS反演雪深的融雪径流模拟
陈智梁, 王娟, 李春红, 王冉旋, 王奕, 马志贵
基于MODIS反演雪深的融雪径流模拟
Simulation of Snowmelt Runoff Based on Retrieved Snow Depth Using MODIS Data
积雪信息的时空分辨率和准确性在一定程度上决定了融雪径流预报的精度。为了更清晰刻画积雪的时空变化过程,减少目前可用的MODIS雪盖产品因时间分辨率较低导致的融雪径流预报误差,在基于MODIS信息反演雪深的基础上,用时空分布的雪深信息作为SRM模型的输入,构建了基于雪深信息的融雪径流模型,并在A流域进行了成功应用。A流域MODIS反演雪深2019、2020年的准确率超过85%,2016-2020年径流模拟的Nash系数均在0.85以上。积雪和融雪径流模拟结果表明,MODIS反演雪深有助于准确刻画积雪的时间、空间分布,采用基于雪深的SRM模型可更精细地反映积雪的时间变化过程,促进融雪径流预报精度的提升。
The precision of snowmelt runoff forecast is affected by many factors. The temporal and spatial resolution and accuracy of snow information are very important factors. The products of snow retrieval using MODIS data are widely used in snowmelt runoff forecast because they are available and have relatively high spatial and temporal resolution. Actually, the available and applied product of snow retrieval using MODIS data is about snow cover information, and the time resolution is 8 days. To reduce the forecast error caused by lacking snow depth information, this paper establishes a regression model based on MODIS reflectance and factors affecting snow depth, and establishes the SRM model based on snow depth. The regression model can be used to retrieve snow depth, and the time resolution of snow depth is 10 days. The snow depth retrieval is used as the input of the SRM model based on snow depth, and is used as the adjustment to correct the calculated daily snow depth. The snowmelt runoff is calculated by variation of the snow depth with time, and meanwhile the daily snow depth is calculated by the variation of the runoff caused by snow melt. The snow depth retrieval and snowmelt runoff model based on snow depth are applied in Basin A in Xinjiang. The results show that the levels of accuracy of snow depth retrieval using MODIS were more than 85% in 2019 and 2020, and the Nash coefficients of runoff simulation in 2016-2020 were all more than 0.85. The simulation results show that the snow depth retrieval helps to describe the temporal and spatial distribution of snow, the SRM model based on snow depth can reflect the temporal variation process of snow cover more accurately, which will improve the precision of runoff forecast.
融雪径流 / 反演雪深 / SRM / MODIS / 积雪覆盖率 {{custom_keyword}} /
snowmelt runoff / snow depth retrieval / SRM / MODIS / snow cover {{custom_keyword}} /
表1 A流域高程带信息表Tab.1 Elevation information in A basin |
高程带编号 | 高程范围/m | 平均高程/m | 面积/km2 | 面积占比/% |
---|---|---|---|---|
Ⅰ | <2 500 | 2 283 | 371.8 | 14.43 |
Ⅱ | 2 500~3 000 | 2 778 | 548.3 | 21.29 |
Ⅲ | 3 000~3 500 | 3 283 | 1 008.3 | 39.14 |
Ⅳ | >3 500 | 3 732 | 647.6 | 25.14 |
表2 遥感反演与实测雪深对比结果统计Tab.2 Comparison of the snow depth between RS retrieved and measured |
年份 | 数据点数 | 正确点 | 准确率/% | 平均积雪深度 | ||
---|---|---|---|---|---|---|
反演值/cm | 实测值/cm | 精确度/% | ||||
2019 | 34 | 29 | 85.29 | 19.69 | 18.25 | 92.11 |
2020 | 25 | 22 | 88.00 | 21.12 | 20.84 | 98.67 |
均值 | 86.64 | 95.39 |
图5 各区2016-2020年平均雪深变化过程图Fig.5 Variation process of average snow depth in 2016-2020 |
表3 不同高程带气温直减率Tab.3 The lapse rate of air temperature in elevation bands |
高程范围/m | <2 500 | 2 500~3 000 | 3 000~3 500 | >3 500 |
---|---|---|---|---|
参考测站 | A4、A3、A2、A1 | A5、S1 | S2、A5 | S2、A5 |
气温直减率/[℃·(100 m)-1] | 0.62 | 0.64 | 0.68 | 0.68 |
表4 径流模拟结果Tab.4 Simulation results of snowmelt runoff |
年份 | 实测径流/亿m3 | 模拟径流/亿m3 | 径流误差/% | R 2 | |
---|---|---|---|---|---|
率定期 | 2016 | 26.99 | 28.38 | 5.15 | 0.87 |
2017 | 18.40 | 19.67 | 6.90 | 0.88 | |
2018 | 18.30 | 17.95 | -1.91 | 0.92 | |
2019 | 18.43 | 17.88 | -2.97 | 0.91 | |
检验期 | 2020 | 14.16 | 14.11 | -0.34 | 0.92 |
1 |
向燕芸,王志成,张辉,等.干旱区融雪径流模拟的研究进展与展望[J].冰川冻土,2017,39(4): 892-901.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王福勇. 基于MODIS遥感影像的融雪径流模拟研究[J].水利水电技术,2015,46(4):26-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘晓林,杨胜天,赵长森,等.多源遥感驱动的SRM模型在缺资料地区的研究及应用[J].遥感技术与应用, 2015,30(4):645-652.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
刘洁,夏军,邹磊,等.多卫星遥感降水数据在塔里木河流域的实用性分析[J]. 南水北调与水利科技, 2018,16(5):1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
周峰,覃姗,岳春芳,等. 基于SRM模型的金沟河流域融雪径流模拟[J]. 中国水利水电科学研究院学报, 2020,18(5):395-400.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
魏光辉,向怡衡,陈杰,等. 塔里木河流域积雪时空变化及融雪径流模拟[J]. 中国农村水利水电, 2020(4):49-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王飞,朱仲元,张鹏,等. SRM融雪径流模型在锡林河流域的应用[J]. 干旱区研究, 2019,36(3):575-581.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
金浩宇,鞠琴. SRM模型在尼洋河流域的应用研究[J].水文,2019,39(5):19-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陈心池,张利平,陈少丹,等.SRM融雪径流模型在奎屯河流域洪水预报的应用[J].南水北调与水利科技,2018,16(1):50-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
刘元波,吴桂平,柯长青,等.水文遥感[M].北京:科学出版社,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
黄晓东,李旭冰,刘畅宇,等.青藏高原积雪范围和雪深/雪水当量遥感反演研究进展及调整[J].冰川冻土,2019,41(5):1 138-1 149.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
傅华,沙依然,黄镇,等.MODIS积雪遥感监测系统的研制[J].气象,2007,33(3):114-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
傅华,李三妹,黄镇,等.MODIS雪深反演数学模型验证及分析[J].干旱区地理,2007,30(6):907-914.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
刘海,陈晓玲,宋珍,等.MODIS影像雪深遥感反演特征参数选择与模型研究[J].武汉大学学报·信息科学版, 2011,36(1):113-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
裴欢,房世峰,覃志豪,等.基于遥感的新疆北疆积雪盖度及雪深监测[J].自然灾害学报, 2008,17(5):52-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
刘艳,张璞,李杨,等.基于MODIS数据的雪深反演:以天山北坡经济带为例[J].地理与地理信息科学, 2005,21(6):52-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
黄慰军,黄镇,崔彩霞,等.新疆雪密度时空分布及其影响特征研究[J].冰川冻土,2007,29(1):66-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
苑希民,李鸿雁,刘树坤,等. 神经网络和遗传算法在水科学领域的应用[M]. 北京:中国水利水电出版社, 2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |