
湄公河径流多时间尺度变化特征研究
吴玥葶, 郭利丹, 曾天山, 李琼芳, 井沛然
湄公河径流多时间尺度变化特征研究
An Analysis of Multi-time Scales Characteristics of Runoff in Mainstream of Mekong River
基于湄公河干流5个水文站1960-2018年逐日流量资料,采用Mann-Kendall检验和滑动t检验法,从年、丰枯水期和极端日多个尺度分析径流变化特征及演变趋势。结果表明:①湄公河干流的年径流沿程递增,各站年径流的年际幅度相对较小,除穆达汉站上升外其余各站呈波动式下降趋势,多在20世纪90年代中期发生突变。②径流年内分配极不均匀,有明显丰枯之分,丰水期径流量占年径流量的80%左右,其多年变化除穆达汉站呈上升趋势外,其余四站呈下降趋势;各站枯水期径流多年变化均呈上升趋势,但年际变化差异较大。③极端最大径流除穆达汉站呈不显著上升趋势外,其余各站均呈现显著下降趋势,清盛站和琅勃拉邦站的年际变化较为剧烈,且清盛站容易发生极端洪水事件;各站极端最小径流的多年变化过程普遍呈现上升趋势,上丁站和穆达汉站的年际变化相对较为剧烈,各站均不容易发生极端枯水事件。
Based on the daily discharge data of five hydrological stations on the mainstream of Mekong River from 1960 to 2018, methods of Mann-Kendall test and sliding t-test are employed, and variation characteristics and trends of runoff are analyzed from multiple scales of year, wet and dry periods, and extreme days. The results show that: ① The annual runoff of the mainstream of Mekong River increases along the river way, and the inter-annual range of annual runoff for each station is relatively small. Except for an upward trend at Mukdahan Station, the other stations show a fluctuating decline trend, and most of them have abrupt changes in the mid-1990s. ② The monthly distribution of runoff is extremely uneven, with obvious wet and dry periods. The runoff in wet period accounts for about 80% of the total annual runoff. The inter-annual variation of wet period runoff increases at Mukdahan Station, but shows a declining trend at the other four stations. The inter-annual variation of runoff in the dry period at the five stations shows an upward trend, while the variation range varies greatly. ③ The extreme maximum runoff shows a non-significant upward trend at Mukdahan Station, and the other stations show a significant declining trend. The inter-annual variation for Chiang Saen and Luang Prabang Stations are more severe, and especially Chiang Saen Station is prone to extreme flood events. The inter-annual variation process of extreme minimum runoff at the five stations generally shows an upward trend, and the inter-annual variation for Stung Treng and Mukdahan Stations are relatively severe, and none of the stations are prone to extreme dry water events.
径流 / Mann-Kendall检验 / 滑动t检验 / 多时间尺度 / 湄公河 {{custom_keyword}} /
runoff / Mann-Kendall test / sliding t-test / multi-time scales / Mekong River {{custom_keyword}} /
图1 湄公河干流水文站1960-2018年径流年际变化过程Fig.1 Interannual variation process of annual runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
表1 湄公河干流水文站1960-2018年径流变化统计特征Tab.1 Statistical characteristics of annual runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 平均年径流/亿m3 | 最大年径流 | 最小年径流 | 极值比K(最大值/最小值) | 变差系数Cv | ||
---|---|---|---|---|---|---|---|
径流量/亿m3 | 年份 | 径流量/亿m3 | 年份 | ||||
清盛 | 839 | 1 268 | 1966 | 611 | 1992 | 2.07 | 0.145 |
琅勃拉邦 | 1 212 | 1 731 | 1966 | 766 | 1992 | 2.26 | 0.158 |
穆达汉 | 2 521 | 3 514 | 2011 | 1 662 | 1992 | 2.11 | 0.165 |
巴色 | 3 136 | 4 144 | 2011 | 2 155 | 1998 | 1.92 | 0.151 |
上丁 | 4 074 | 5 649 | 2000 | 2 727 | 1998 | 2.07 | 0.161 |
表2 湄公河干流水文站1960-2018年径流变化趋势显著性检测Tab.2 Significance detection of the tendency of annual runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | Z值 | 显著性(α=0.05) | 变化趋势 |
---|---|---|---|
清盛 | -1.75 | 不显著 | 下降趋势 |
琅勃拉邦 | -2.09 | 显著 | 下降趋势 |
穆达汉 | 1.57 | 不显著 | 上升趋势 |
巴色 | -0.08 | 不显著 | 下降趋势 |
上丁 | -0.77 | 不显著 | 下降趋势 |
图2 清盛站1960-2018年径流过程的突变检验Fig.2 Abrupt change test of annual runoff at Chiang Saen hydrological station during 1960-2018 |
表3 湄公河干流水文站1960-2018年不同尺度径流序列突变点检测Tab.3 Abrupt change test of different scale runoff series at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 突变点检测(年份) | ||||
---|---|---|---|---|---|
年径流 | 丰水期径流 | 枯水期径流 | 极端最大7日径流 | 极端最小7日径流 | |
清盛 | 1974 | 2008 | 2011 | 2008 | 1992 |
琅勃拉邦 | 1986 | 2006 | 1985 | 2005 | 2010 |
穆达汉 | 1993 | 1993 | 2005 | 1993 | 2005 |
巴色 | 1993 | 1992 | 1985 | 1981 | 1985 |
上丁 | 1994 | 2005 | 2011 | 1994 | 1995 |
表4 湄公河干流水文站1960-2018年丰枯水期径流统计特征Tab.4 Statistical characteristics of runoff both in wet and dry periods at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 丰水期(6-11月) | 枯水期(12-5月) | 极值比K(丰水期/枯水期) | |||
---|---|---|---|---|---|---|
平均径流/亿m3 | 占年径流量的比重/% | 变差系数Cv | 平均径流/亿m3 | 变差系数Cv | ||
清盛 | 646 | 77.06 | 0.196 | 193 | 0.241 | 3.35 |
琅勃拉邦 | 963 | 79.45 | 0.188 | 249 | 0.203 | 3.87 |
穆达汉 | 2 125 | 84.28 | 0.178 | 398 | 0.242 | 5.34 |
巴色 | 2 687 | 85.70 | 0.166 | 450 | 0.210 | 5.97 |
上丁 | 3 532 | 86.71 | 0.176 | 544 | 0.204 | 6.49 |
图4 湄公河干流水文站1960-2018年丰水期径流年际变化过程Fig.4 Interannual variation process of runoff in wet period at five hydrological stations on mainstream of Mekong River during 1960-2018 |
图5 湄公河干流水文站1960-2018年枯水期径流年际变化过程Fig.5 Interannual variation process of runoff in dry period at five hydrological stations on mainstream of Mekong River during 1960-2018 |
表5 湄公河干流水文站1960-2018年丰枯水期径流变化趋势显著性检测Tab.5 Significance detection of the tendency of runoff both in wet and dry periods at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 丰水期(6-11月) | 枯水期(12-5月) | ||||
---|---|---|---|---|---|---|
Z值 | 显著性(α=0.05) | 趋势 | Z值 | 显著性(α=0.05) | 趋势 | |
清盛 | -3.54 | 显著 | 下降趋势 | 3.37 | 显著 | 上升趋势 |
琅勃拉邦 | -2.67 | 显著 | 下降趋势 | 0.55 | 不显著 | 上升趋势 |
穆达汉 | 0.38 | 不显著 | 上升趋势 | 4.96 | 显著 | 上升趋势 |
巴色 | -0.81 | 不显著 | 下降趋势 | 3.31 | 显著 | 上升趋势 |
上丁 | -1.65 | 不显著 | 下降趋势 | 3.07 | 显著 | 上升趋势 |
表6 湄公河干流水文站1960-2018年极端径流变差系数CvTab.6 Coefficient of variation Cv of extreme runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 极端最大径流Cv | 极端最小径流Cv | ||||||
---|---|---|---|---|---|---|---|---|
1日 | 3日 | 7日 | 15日 | 1日 | 3日 | 7日 | 15日 | |
清盛 | 0.295 | 0.305 | 0.316 | 0.301 | 0.240 | 0.238 | 0.227 | 0.230 |
琅勃拉邦 | 0.249 | 0.253 | 0.264 | 0.258 | 0.219 | 0.219 | 0.212 | 0.211 |
穆达汉 | 0.174 | 0.176 | 0.182 | 0.188 | 0.296 | 0.296 | 0.296 | 0.300 |
巴色 | 0.173 | 0.172 | 0.169 | 0.174 | 0.241 | 0.244 | 0.243 | 0.248 |
上丁 | 0.187 | 0.190 | 0.190 | 0.187 | 0.307 | 0.309 | 0.307 | 0.303 |
表7 湄公河干流水文站1960-2018年极端径流峰度系数CkTab.7 Coefficient of Kurtosis Ck of extreme runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 极端最大径流Ck | 极端最小径流Ck | ||||||
---|---|---|---|---|---|---|---|---|
1日 | 3日 | 7日 | 15日 | 1日 | 3日 | 7日 | 15日 | |
清盛 | 6.082 | 6.924 | 7.472 | 7.685 | 2.228 | 2.368 | 2.673 | 3.295 |
琅勃拉邦 | 0.377 | 0.517 | 0.574 | 1.398 | 2.771 | 2.709 | 2.958 | 3.168 |
穆达汉 | -0.363 | -0.321 | -0.322 | -0.450 | 1.306 | 1.303 | 1.269 | 1.432 |
巴色 | 0.501 | 0.589 | 0.254 | 0.115 | 2.094 | 2.040 | 1.963 | 2.201 |
上丁 | -0.327 | -0.393 | -0.428 | -0.400 | 1.234 | 1.208 | 1.156 | 1.134 |
图6 湄公河干流水文站1960-2018年极端最大7日径流年际变化过程Fig.6 Interannual variation process of extreme maximum 7-day runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
图7 湄公河干流水文站1960-2018年极端最小7日径流年际变化过程Fig.7 Interannual variation process of extreme minimum 7-day runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
表8 湄公河干流水文站1960-2018年极端径流趋势显著性检验Tab.8 Significance detection of the tendency of extreme runoff at five hydrological stations on mainstream of Mekong River during 1960-2018 |
站名 | 极端最大径流(Z值) | 极端最小径流(Z值) | ||||||
---|---|---|---|---|---|---|---|---|
1日 | 3日 | 7日 | 15日 | 1日 | 3日 | 7日 | 15日 | |
清盛 | -3.22 | -3.33 | -3.46 | -3.82 | 0.94 | 1.20 | 1.65 | 2.24 |
琅勃拉邦 | -2.18 | -2.47 | -2.42 | -2.60 | -0.40 | -0.44 | -0.19 | 0.42 |
穆达汉 | 0.32 | 0.27 | 0.26 | 0.22 | 6.02 | 6.04 | 6.06 | 6.30 |
巴色 | -2.30 | -2.29 | -2.13 | -1.79 | 4.58 | 4.64 | 4.67 | 4.81 |
上丁 | -2.15 | -2.01 | -2.19 | -2.12 | 2.99 | 3.01 | 3.10 | 3.40 |
1 |
谈晓珊,王婕,唐雄朋,等.1960-2012年澜沧江-湄公河流域气候变化趋势及不同区间的径流响应[J].水资源与水工程学报,2020,31(4):1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
于文金,黄亦露,邵明阳.澜沧江流域极端天气灾害特征及波动趋势[J].生态学报,2015,35(5):1 378-1 387.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
李斌,李丽娟,李海滨,等.澜沧江流域干旱变化的时空特征[J].农业工程学报,2011,27(5):87-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
邵明阳.澜沧江流域干旱特征与海温异常关联性研究[D].南京:南京信息工程大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
唐见,翟文亮,曹慧群.澜沧江流域旱涝特征变化及其与季风之间的关联性研究[J].长江科学院院报,2019,36(3):19-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
周婷,李传哲,于福亮,等.澜沧江—湄公河流域气象干旱时空分布特征分析[J].水电能源科学, 2011,29(6):4-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
吴迪,赵勇,裴源生,等.气候变化对澜沧江-湄公河上中游径流的影响研究[J].自然资源学报,2013,28(9):1 569-1 582.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
吴迪,裴源生,赵勇,等.湄公河流域农业干旱主要影响因素分析和预估[J].农业工程学报, 2012,28(8):1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
贺清.基于干旱指数和ENSO指数的水位重建:以湄公河和长江流域为例[D].武汉:武汉大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陈兴茹,王兴勇,白音包力皋.湄公河流域洪旱灾害损失分析[J].水利经济,2019,37(1):54-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
刘慧,杨泽川,许凤冉,等.澜沧江-湄公河流域干旱分析及上游水库影响[J].中国水利水电科学研究院学报,2020,18(6):479-485.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
李昌文,徐照明,游中琼,等.湄公河干流洪水洪灾特点及防洪对策研究[J].人民长江,2019,50(7):35-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
黄燕,李妍清,何小聪,等.湄公河流域洪水特性分析[J].人民长江,2018,49(22):12-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
叶晶萍,刘政,欧阳磊,等.不同时间尺度小流域径流变化及其归因分析[J].生态学报,2019,39(12):4 478-4 487.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
李闰洁,李升峰,吴森垚.城市化条件下的秦淮河流域径流多时间尺度变化特征及影响因素[J].水土保持通报,2020,40(4):100-107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
孙栋元,齐广平,马彦麟,等.疏勒河干流径流变化特征研究[J].干旱区地理,2020,43(3):557-567.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
周婷,于福亮,李传哲,等.1960-2005年湄公河流域径流量演变趋势[J].河海大学学报(自然科学版),2010,38(6):608-613.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
史婉丽,禹雪中,廖文根.澜沧江流域干旱气候变化特征及影响因素分析[J].水电能源科学,2013,31(3):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
孙周亮,刘艳丽,刘冀,等.1960-2012年湄公河干流径流时空演变[J].南水北调与水利科技,2020,18(1):51-65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
龚珏,杜洪勋,郑江坤,等.川北典型小流域产流对降雨的多时间尺度响应规律[J].长江流域资源与环境,2020,29(6):1 445-1 453.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
魏凤英.现代气候统计诊断与预测技术[M].2版.北京:气象出版社, 2007:19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
王俊骄,张雅旎,孙晓燕.综合R/S法和Mann-Kendall法分析杭州市60年小雨降水日趋势变化[J].科技通报, 2019,35(12):41-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
翟秋敏,张文佳,安宁,等.基于M-K、小波和R/S方法的豫南地区气候变化的多时间尺度分析[J].河南大学学报(自然科学版), 2017,47(5):532-543.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
刘俊萍,周俊杰,邹先柏.渭河流域宝鸡段气温及降水突变分析[J].浙江工业大学学报, 2018,46(4):423-428.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
周婷,于福亮,李传哲,等.湄公河清盛站水文情势变化分析[J].水电能源科学,2011,29(11):15-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
尹家波,郭生练,王俊,等.基于贝叶斯模式平均方法融合多源数据的水文模拟研究[J].水利学报,2020,51(11):1 335-1 346.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |