
含仿生草明渠水流流速结构试验研究
付长静, 王锦国, 赵天龙, 吕毅
含仿生草明渠水流流速结构试验研究
Experimental Research on the Flow Structure in the Open Channel with Bionic Grass
仿生草防护技术是通过降低水下管道附近水流的流速,促进泥沙在管道附近进行沉降淤积以控制冲刷发展的防护技术。目前,对含有仿生草明渠水流流速的研究主要通过测定草前、中、后的流速变化规律,分析仿生草防护段泥砂淤积变化,极少对含仿生草明渠流的全流速场进行有效的测量。利用PIV测试技术对水流作用下仿生草防护段后的流速场进行了测量,分析了仿生草防护段后明渠水流沿流向垂直平面内时均流速分布规律以及草高及铺设间距对流速分布的影响,并深入探讨了仿生草防护段后明渠流脉动流速概率密度分布及脉动流速空间相关性。
The problem of suspension treatment of oil and gas pipelines has been highly concerned by engineering construction units and researchers. Research shows that the bionic grass can effectively reduce the flow rate, promote sediment deposition, and control the development of the pipeline suspension area. The velocity distribution of open channel flow with bionic grass is very complex.The height and spacing of bionic grass will affect the river flow velocity distribution. At present, the flow velocity in the open channels containing bionic grass is mainly studied by measuring the velocity variation in front, middle and back of bionic grass, but few effective measurements are made for the full velocity field. This paper describes the use of modern means of advanced test by using standard particle image velocimetry (PIV) measurements with bionic grass along the water channel to the vertical plane of the distribution of velocity field. The probability density distribution and spatial correlation of pulsating velocity in the open channel after bionic grass section is further discussed.
仿生草 / 时均流速 / 脉动流速 / 空间相关性 {{custom_keyword}} /
bionic grass / time-averaged velocity / fluctuating velocity / spatial correlation {{custom_keyword}} /
表1 试验工况参数Tab.1 Test conditions and related parameters |
序号 | 工况 | 水深d/m | 流量Q/(L·s-1) | 流速v/(m·s-1) | Re | Fr | 谢才系数 C | 运动黏滞系数υ/(10-6m2·s-1) | 草高Hg /m |
---|---|---|---|---|---|---|---|---|---|
1 | B25S | 0.109 | 6 | 0.18 | 8 324.7 | 0.171 | 624.065 | 1.27 | 0.075 |
2 | B25M | 0.112 | 5 | 0.22 | 10 268.4 | 0.217 | 622.568 | ||
3 | B25L (H25-1.5、D252) | 0.090 | 6 | 0.27 | 11 040.4 | 0.285 | 611.579 | ||
4 | H25-1 | 0.090 | 6 | 0.27 | 11 040.4 | 0.285 | 611.579 | 1.27 | 0.050 |
5 | H25-1.2 | 0.060 | |||||||
6 | D251 | 0.090 | 6 | 0.27 | 11 040.4 | 0.285 | 611.579 | 1.27 | 0.075 |
7 | D253 | 0.090 | 6 | 0.27 | 11 040.4 | 0.285 | 611.579 | 1.27 | 0.075 |
图3 不同工况条件下仿生草倒伏Fig.3 Lodging values of bionic grass at different working condition |
图4 不同工况仿生草防护段后纵向时均流速分布云图Fig.4 The distribution of the time-averaged longitudinal velocity in different working conditions |
表2 不同工况下仿生草倒伏情况Tab.2 The lodging of bionic grass under different working conditions |
序号 | 工况 | 原始草高/cm | 倒伏后草高/cm | 序号 | 工况 | 原始草高/cm | 倒伏后草高/cm |
---|---|---|---|---|---|---|---|
1 | B25S | 7.5 | 7.0 | 5 | H25-1.2 | 6.0 | 5.1 |
2 | B25M | 7.5 | 6.5 | 6 | H25-1.5 (D252) | 7.5 | 5.5 |
3 | B25L | 7.5 | 5.5 | 7 | D251 | 7.5 | 5.5 |
4 | H25-1 | 5.0 | 4.6 | 8 | D253 | 7.5 | 5.4 |
表3 不同工况下的ζuu 值Tab.3 The value of ζuu in different working conditions |
相关系数r | B25S | B25M | B25L | H25-1 | H25-1.2 | H25-1.5 | D251 | D252 | D253 |
---|---|---|---|---|---|---|---|---|---|
<-0.14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-0.14 ~ -0.10 | 0 | 0 | 0.001 | 0 | 0.001 | 0.001 | 0.002 | 0.001 | 0.012 |
-0.10 ~ -0.06 | 0.011 | 0.008 | 0.037 | 0.012 | 0.027 | 0.037 | 0.031 | 0.037 | 0.055 |
-0.06 ~ -0.02 | 0.080 | 0.057 | 0.203 | 0.145 | 0.139 | 0.203 | 0.127 | 0.203 | 0.077 |
-0.02 ~ 0.02 | 0.214 | 0.158 | 0.352 | 0.325 | 0.326 | 0.352 | 0.225 | 0.352 | 0.170 |
0.02 ~ 0.06 | 0.328 | 0.278 | 0.255 | 0.317 | 0.306 | 0.255 | 0.236 | 0.255 | 0.303 |
0.06 ~ 0.1 | 0.210 | 0.236 | 0.113 | 0.115 | 0.115 | 0.113 | 0.217 | 0.113 | 0.195 |
0.10 ~ 0.14 | 0.081 | 0.119 | 0.029 | 0.051 | 0.046 | 0.029 | 0.119 | 0.029 | 0.104 |
0.14 ~ 0.18 | 0.047 | 0.067 | 0.004 | 0.018 | 0.016 | 0.004 | 0.031 | 0.004 | 0.053 |
0.18 ~ 0.22 | 0.021 | 0.041 | 0.002 | 0.007 | 0.011 | 0.002 | 0.005 | 0.002 | 0.017 |
0.22 ~ 0.26 | 0.005 | 0.022 | 0.001 | 0.003 | 0.004 | 0.001 | 0.002 | 0.001 | 0.004 |
0.26 ~ 0.30 | 0.001 | 0.009 | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.003 |
>0.30 | 0.001 | 0.004 | 0.003 | 0.006 | 0.007 | 0.003 | 0.003 | 0.003 | 0.007 |
表4 不同工况下的ζvv 值Tab.4 The value of ζvv in different working conditions |
相关系数r | B25S | B25M | B25L | H25-1 | H25-1.2 | H25-1.5 | D251 | D252 | D253 |
---|---|---|---|---|---|---|---|---|---|
<-0.14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-0.14~-0.10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-0.10~-0.06 | 0.011 | 0.006 | 0.008 | 0.006 | 0.004 | 0.008 | 0.018 | 0.008 | 0.008 |
-0.06~-0.02 | 0.136 | 0.121 | 0.174 | 0.115 | 0.137 | 0.174 | 0.226 | 0.174 | 0.184 |
-0.02~0.02 | 0.405 | 0.397 | 0.506 | 0.397 | 0.502 | 0.506 | 0.499 | 0.506 | 0.490 |
0.02~0.06 | 0.329 | 0.313 | 0.271 | 0.316 | 0.299 | 0.271 | 0.222 | 0.271 | 0.242 |
0.06~0.10 | 0.096 | 0.117 | 0.037 | 0.097 | 0.046 | 0.037 | 0.029 | 0.037 | 0.056 |
0.10~0.14 | 0.017 | 0.034 | 0.003 | 0.037 | 0.007 | 0.003 | 0.003 | 0.003 | 0.012 |
0.14~0.18 | 0.003 | 0.009 | 0.001 | 0.019 | 0.003 | 0.001 | 0.001 | 0.001 | 0.004 |
0.18~0.22 | 0.001 | 0.002 | 0 | 0.006 | 0.001 | 0 | 0 | 0 | 0.001 |
0.22~0.26 | 0 | 0 | 0 | 0.003 | 0 | 0 | 0 | 0 | 0.001 |
0.26~0.30 | 0 | 0 | 0 | 0.002 | 0 | 0 | 0 | 0 | 0 |
>0.30 | 0 | 0.001 | 0 | 0.002 | 0.001 | 0 | 0 | 0 | 0.001 |
表5 不同工况下的ζuv 值Tab.5 The value of ζuv in different working conditions |
相关系数r | B25S | B25M | B25L | H25-1 | H25-1.2 | H25-1.5 | D251 | D252 | D253 |
---|---|---|---|---|---|---|---|---|---|
<-0.10 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0.001 | 0 | 0 |
-0.10~-0.08 | 0.003 | 0.001 | 0.002 | 0.007 | 0.002 | 0.002 | 0.007 | 0.002 | 0.001 |
-0.08~-0.06 | 0.015 | 0.010 | 0.017 | 0.028 | 0.015 | 0.017 | 0.033 | 0.017 | 0.009 |
-0.06~-0.04 | 0.062 | 0.045 | 0.074 | 0.066 | 0.055 | 0.074 | 0.096 | 0.074 | 0.045 |
-0.04~-0.02 | 0.145 | 0.114 | 0.162 | 0.129 | 0.144 | 0.162 | 0.200 | 0.162 | 0.145 |
-0.02~0 | 0.214 | 0.188 | 0.246 | 0.201 | 0.241 | 0.246 | 0.267 | 0.246 | 0.269 |
0~0.02 | 0.222 | 0.225 | 0.243 | 0.225 | 0.259 | 0.243 | 0.224 | 0.243 | 0.259 |
0.02~0.04 | 0.168 | 0.205 | 0.164 | 0.176 | 0.178 | 0.164 | 0.121 | 0.164 | 0.164 |
0.04~0.06 | 0.103 | 0.133 | 0.073 | 0.104 | 0.084 | 0.073 | 0.041 | 0.073 | 0.076 |
0.06~0.08 | 0.048 | 0.056 | 0.017 | 0.046 | 0.020 | 0.017 | 0.009 | 0.017 | 0.026 |
0.08~0.10 | 0.016 | 0.016 | 0.002 | 0.014 | 0.002 | 0.002 | 0.001 | 0.002 | 0.006 |
0.10~0.12 | 0.004 | 0.005 | 0 | 0.002 | 0 | 0 | 0 | 0 | 0 |
>0.12 | 0.001 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表6 不同工况下的ζvu 值Tab.6 The value of ζvu in different working conditions |
相关系数r | B25S | B25M | B25L | H25-1 | H25-1.2 | H25-1.5 | D251 | D252 | D253 |
---|---|---|---|---|---|---|---|---|---|
<-0.10 | 0.001 | 0 | 0.001 | 0 | 0 | 0.001 | 0.001 | 0.001 | 0 |
-0.01~-0.08 | 0.006 | 0.003 | 0.004 | 0.001 | 0.002 | 0.004 | 0.005 | 0.004 | 0.001 |
-0.08~-0.06 | 0.020 | 0.014 | 0.026 | 0.006 | 0.017 | 0.026 | 0.026 | 0.026 | 0.008 |
-0.06~-0.04 | 0.054 | 0.049 | 0.089 | 0.034 | 0.072 | 0.089 | 0.091 | 0.089 | 0.043 |
-0.04~-0.02 | 0.118 | 0.111 | 0.201 | 0.118 | 0.186 | 0.201 | 0.197 | 0.201 | 0.135 |
-0.02~0 | 0.193 | 0.180 | 0.281 | 0.246 | 0.282 | 0.281 | 0.276 | 0.281 | 0.250 |
0~0.02 | 0.230 | 0.215 | 0.240 | 0.306 | 0.255 | 0.240 | 0.237 | 0.240 | 0.279 |
0.02~0.04 | 0.191 | 0.193 | 0.118 | 0.204 | 0.133 | 0.118 | 0.121 | 0.118 | 0.186 |
0.04~0.06 | 0.113 | 0.132 | 0.034 | 0.070 | 0.044 | 0.034 | 0.038 | 0.034 | 0.078 |
0.06~0.08 | 0.050 | 0.067 | 0.006 | 0.013 | 0.009 | 0.006 | 0.007 | 0.006 | 0.017 |
0.08~0.10 | 0.018 | 0.026 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 |
0.10~0.12 | 0.005 | 0.008 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
>0.12 | 0.001 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 |
李俊杰,侯志民,田培胜.巨浪冲蚀威胁下的海底管道仿生草防护技术[J]. 海岸工程, 2017,36(4):37-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
庄丽华,阎军,范奉鑫,等.茂名30万吨级单点码头输油海管悬空段人工海草试验研究[J].海洋工程,2010,28(2):76-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
冯卫兵,汪涛,邓伟. 柔性植物消波特性试验研究[J].科学技术与工程,2012,12(26):6 687-6 690.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
孟强,吴云云.滩海工程中仿生草消浪特性试验研究[J].水利与建筑工程学报,2014(4):185-190.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
槐文信,韩杰,曾玉红,等.淹没柔性植被明渠恒定水流水力特性的试验研究[J].水利学报,2009,40(7):791-797.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
槐文信,韩杰,曾玉红,等.基于掺长理论的淹没柔性植被水流流速分布研究[J].应用数学和力学,2009,30(3):325-332.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
吴福生,王文野,姜树海. 含植物河道水动力学研究进展[J]. 水科学进展,2007,18(3):456-461.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
吴福生,姜树海,邢磊,等.用PIV测量含淹没刚性植物明渠水流流速场[J].武汉大学学报(工学版),2009,42(5):587-591.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王忖,王超.含挺水植物和沉水植物水流紊动特性[J].水科学进展,2010,21(6):816-822.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
张建梅,钟亮,刘珺洁.密排粗糙床面明渠水流的流速结构[J].水电能源科学,2018,36(10):108-112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |