
复杂重力流供水系统水力过渡过程分析与水锤防护设计
周天驰, 李高会, 仇为鑫, 孙哲豪, 穆孟婧
复杂重力流供水系统水力过渡过程分析与水锤防护设计
Hydraulic Transient Analysis and Water Hammer Protection Design of Complex Gravity Flow Water Supply System
临平自来水厂供水工程起点位于千岛湖引水工程余杭分水点,供水对象为临平、仁和、宏畔、塘栖4个水厂,管道直径1.4~2.6 m,总长度30.9 km,远景供水规模43 万m3/d,采用全程重力流供水方式,供水用户多、线路复杂,水力过渡过程计算分析复杂、水锤防护设计难度大。首先采用华东院自主开发的供水工程水力过渡过程仿真计算软件Hysimcity进行建模及计算分析,确定供水系统水力过渡过程中压力变化情况;接着针对供水系统各个部位的水力学特点以及整个系统的水力学特性,开展整个输水系统的水锤防护设计。最终确定在临平、仁和、宏畔、塘栖水厂前设置直径1 m的超压泄压阀及各个水厂阀门一段直线关闭的联合水锤防护方案,有效解决了多用户重力流供水系统的水锤问题。
The water supply project of Linping waterworks starts from Yuhang water distribution outlet of Qiandaohu Water Diversion Project, supplying for four waterworks of Linping, Renhe, Hongpan and Tangqi. The diameter of the pipeline is 2.6~1.4 m, the total length is 30.9 km, and the prospective water supply scale is 43×104 m3/d. The project adopts gravity flow water supply mode, with many water users and complex lines, so the calculation and analysis of hydraulic transient process is complex and the design of water hammer protection is difficult. In this paper, the hydraulic transient process simulation software-Hysimcity developed by Huadong Engineering Corporation Limited is used for modeling and calculation, and the pressure change of water supply system in the hydraulic transient process is obtained. According to the hydraulic characteristics of the system, the water hammer protection design of the whole water supply system is carried out. After a lot of trial calculation and analysis, when the regulating valve in front of the waterworks is closed in 120 s, the water hammer problem is effectively solved by setting the pressure relief valve with diameter of 1m in front of each waterworks.
复杂供水系统 / 重力流 / 水锤防护 / 超压泄压阀 {{custom_keyword}} /
complex water supply system / gravity flow / water hammer protection / pressure relief valve {{custom_keyword}} /
表1 管道断面参数表Tab.1 Pipe parameter |
管道名称 | L/km | D/m | A/m2 | n |
---|---|---|---|---|
余杭分水点-临平分水点 | 1.40 | 2.6 | 5.31 | 0.013 |
临平分水点-临平水厂 | 1.43 | 2.6 | 5.31 | 0.013 |
临平分水点-仁和分水点 | 5.00 | 2.6 | 5.31 | 0.013 |
仁和分水点-宏畔分水点 | 4.04 | 1.4 | 1.54 | 0.013 |
宏畔分水点-宏畔水厂 | 0.62 | 1.4 | 1.54 | 0.013 |
宏畔分水点-塘栖水厂 | 5.05 | 1.4 | 1.54 | 0.013 |
表2 管道高程表Tab.2 Pipeline elevation |
管道名称 | 高点桩号 | 高点高程 | 低点桩号 | 低点高程 |
---|---|---|---|---|
余杭分水点-临平分水点 | 1 340 | 1.30 | 1 360 | -3.50 |
临平分水点-临平水厂 | 9 756 | 6.10 | 2 153 | -9.10 |
临平分水点-仁和分水点 | 2 200 | 5.50 | 4 116 | -5.96 |
仁和分水点-宏畔分水点 | 410 | 8.00 | 3 240 | -8.00 |
宏畔分水点-宏畔水厂 | 611 | 0.37 | 280 | -3.20 |
宏畔分水点-塘栖水厂 | 4 935 | 1.06 | 0 | -3.2 |
表3 各工况水量分配 (万t/d)Tab.3 Water distribution of each condition |
工况 | 临平水厂 | 仁和水厂 | 宏畔水厂 | 塘栖水厂 |
---|---|---|---|---|
1 | 0 | 43 | 0 | 0 |
2 | 0 | 20 | 13 | 10 |
3 | 20 | 0 | 13 | 10 |
4 | 20 | 23 | 0 | 0 |
5 | 20 | 13 | 5.5 | 4.5 |
6 | 43 | 0 | 0 | 0 |
表4 各工况管道流量 (m3/s)Tab.4 Pipeline flow under each condition |
管道名称 | C1 | C2 | C3 | C4 | C5 | C6 | |
---|---|---|---|---|---|---|---|
闲林水库-余杭分水点 | - | - | - | - | - | - | |
余杭分水点-嘉兴分水点 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | 4.98 | |
余杭分水点-临平分水点 | 0 | 0 | 2.32 | 2.66 | 2.32 | 4.98 | |
临平分水点-临平水厂 | 4.98 | 4.98 | 2.66 | 2.32 | 2.66 | 0 | |
临平分水点-仁和分水点 | 4.98 | 2.31 | 0 | 2.32 | 1.50 | 0 | |
仁和分水点-宏畔分水点 | 0 | 1.74 | 1.74 | 0 | 1.16 | 0 | |
宏畔分水点-宏畔水厂 | 0 | 0.58 | 0.58 | 0 | 0.64 | 0 | |
宏畔分水点-塘栖水厂 | 0 | 1.16 | 1.16 | 0 | 0.52 | 0 |
图2 水力过渡过程计算模型(未设置水锤防护设施)Fig.2 Calculation model of hydraulic transient(without water hammer protection facilities) |
表5 各工况管道压力极值 (m)Tab.5 Extreme pressure of pipeline in each condition |
分段名称 | C1 | C2 | ||
---|---|---|---|---|
H max | H min | H max | H min | |
余杭分水点-临平分水点 | 44.24 | 20.49 | 25.80 | 20.28 |
临平分水点-临平水厂 | 27.12 | 8.50 | - | - |
临平分水点-仁和分水点 | 50.62 | 15.83 | 26.89 | 21.00 |
仁和分水点-宏畔分水点 | - | - | 29.13 | 10.16 |
宏畔分水点-宏畔水厂 | - | - | 23.17 | 15.40 |
宏畔分水点-塘栖水厂 | - | - | 34.00 | 3.79 |
表6 各工况管道压力极值 (m)Tab.6 Extreme pressure of pipeline in each condition |
分段名称 | C5 | C6 | ||
---|---|---|---|---|
H max | H min | H max | H min | |
余杭分水点-临平分水点 | 25.65 | 20.46 | 44.8 | 20.51 |
临平分水点-临平水厂 | 31.11 | 15.24 | 51.82 | 12.85 |
临平分水点-仁和分水点 | 28.01 | 16.32 | - | - |
仁和分水点-宏畔分水点 | 43.54 | 6.48 | - | - |
宏畔分水点-宏畔水厂 | 39.96 | 4.65 | - | - |
宏畔分水点-塘栖水厂 | 39.32 | 9.55 | - | - |
图11 仁和水厂前管道压力包络线(工况1)Fig.11 Pressure along pipeline before Renhe water plant (C1) |
图12 临平水厂前管道压力包络线(工况2)Fig.12 Pressure along pipeline before Linping water plant (C2) |
图13 宏畔水厂前管道压力包络线(工况5)Fig.13 Pressure along pipeline before Hongpan water plant (C5) |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张学林. 长距离有压输水管道水力过渡过程研究[D].郑州:华北水利水电大学,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
黄毅, 陈锋, HUANG,等. 长距离输水工程末端关阀方式对水锤防护的影响[J]. 人民长江,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张显羽, 潘文祥, 李高会. 大流量长距离供水工程水锤防护研究[J]. 小水电,2018,200(2):20-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
杨开林. 电站与泵站中的水力瞬变及调节[M]. 北京:中国水利水电出版社,2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李高会, 周天驰, 顾子龙. 长距离输水工程水锤防护仿真软件开发及其应用[J]. 人民长江,2019(增刊2).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
郑源, 张健. 水力机组过渡过程[M]. 北京:北京大学出版社,2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈家远. 水力过渡过程的数学模拟及控制[M]. 成都:四川大学出版社,2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
FerràsDavid. Experimental distinction of damping mechanisms during hydraulic transients in pipe flow[J]. Journal of Fluids and Structures, 2016,66:424-446.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |