含沙空化对轴流泵内涡量分布的影响

林鹏 胡东 王舒 朱荣生

PDF(12910 KB)
中国农村水利水电 ›› 2021 ›› (2) : 124-132.
农田水利

含沙空化对轴流泵内涡量分布的影响

  • 林鹏1,胡东1,王舒1,朱荣生2
作者信息 +

Effect of Cavitation on Vorticity Distribution in Axial-flow Pump under Sand Conditions

Author information +
稿件信息 +

摘要

考虑空化与泥沙磨损的联合作用,采用SST k-ω湍流模型和ZGB空化模型,数值模拟研究不同空化程度下,轴流泵内涡量的变化过程。结果表明:涡量主要分布在叶片背面后部、出口边处以及叶片头部,工作面处涡量较小。相比清水而言,输送介质中含沙对叶轮和导叶内涡量的影响较大;随着粒径的增大,叶轮和导叶表面涡量随之增大,然而涡量的增大幅度不明显。低含沙量和小颗粒泥沙可以改善导叶内漩涡分布,减小漩涡强度。随着空化压力的降低,泵内涡量迅速增大,说明,粒径对泵内涡量的影响不大,含沙量和空化是引起涡量增大的主要原因。

Abstract

Considering the combined effect of cavitation and sediment wear, the SST k-ε turbulence model and ZGB cavitation model are used to numerically study the vorticity change process in an axial-flow pump to different cavitation degrees. The results show that the vorticity is mainly distributed at the rear of the blade back, the exit edge and the blade head, and the vorticity at the working surface is small. Sediment in the transmission medium, compared with water, has a more significant effect on the vorticity in the impeller and the guide vane. Low sediment concentration and small particles of sediment can improve the vortex distribution and reduce the vortex intensity in the guide vanes. The vorticity increases as the particle size grows, although not obviously. As the cavitation pressure decreases, the vorticity in the pump goes up rapidly. It shows that the particle size has little effect on the vorticity in an axial-flow pump. Sediment concentration and cavitation are the main causes of the increase in vorticity.

关键词

轴流泵 / 含沙空化 / 涡量 / 空化特性

Key words

axial-flow pump / cavitation under sand conditions / vorticity / cavitation characteristics

基金

国家自然科学基金;湖南省教育厅优秀青年项目;湖南省重点领域研发计划

引用本文

导出引用
林鹏 胡东 王舒 朱荣生. 含沙空化对轴流泵内涡量分布的影响[J].中国农村水利水电, 2021(2): 124-132
. Effect of Cavitation on Vorticity Distribution in Axial-flow Pump under Sand Conditions[J].China Rural Water and Hydropower, 2021(2): 124-132

参考文献

[1]LI Q S,WU H,GUO M,et al. Vorticity dynamics in axial compressor flow diagnosis and design(PartII): Methodology and application of boundary vorticity flux [J].Journal of Fluids Engineering,2010,132(1):011 102.
[2] SCHROTTLE J, DORNBRACK A, SCHUMANN U. Excitation of vortex meandering in shear flow[J]. Fluid Dynamics Research, 2015,47(3):035 508.
[3]MICALLEF D, FERREIRA C S, SANT T, et al. Experimental and numerical investigation of tip vortex generation and evolution on horizontal axis wind turbines[J]. Wind Energy, 2016,19(8):1 485-1 501.
[4]SHIGEMITSU T,FUKUDA H,HIROSAWA K. Unsteady flow condition between front and rear rotor of contra-rotating sized axial fan[J].Open Journal of Fluid Dynamics,2017,7(3):371-385.
[5]WU J Z, WU J M. Boundary vorticity dynamics since lighthill's 1963 article: review and development[J]. Theoretical and Computational Fluid Dynamics, 1998,10(1):459-474.
[6]WU J Z,MA H Y,ZHOU M D. Vorticity and vortex dy- namics[M]. Berlin: Spronger-Verlag,2006.
[7]WU J Z, ROACH R.Aerodynamics diagnostic and design based on boundary vorticity dynamics[R]. Norfolk: AIAA-99-3103,1999.
[8]署恒涛, 邱志成, 上官文斌, 等. 基于涡量分析方法的轴流风扇结构优化设计[J].华南理工大学学报(自然科学版), 2018,46(10):102-108,116.
[9]张德胜, 石磊, 陈健, 等. 轴流泵叶顶泄漏涡及其空化的数值模拟与可视化试验[J].水动力学研究与进展(A辑), 2017,32(5):39-48.
[10] 彭凯, 陈闰路, 邵雪明, 等. 轴流泵顶隙涡的数值模拟研究[J].水动力学研究与进展(A辑), 2018,33(6):11-14.
[11] 沈熙, 张德胜, 刘安, 等. 轴流泵叶顶泄漏涡与垂直涡空化特性[J].农业工程学报, 2018,34(12):95-102.
[12] 郭嫱. 叶顶间隙泄漏涡流及空化流场特性研究[D].北京:中国农业大学,2017.
[13] MADADNIA J, OWEN I.Accelerated surface erosion by cavitating particulate-laden flows[J].Wear,1993,165(1):113-116.
[14] MADADNIA J, OWEN I.Erosion in conical diffusers in particulate-laden cavitating flows[J].International Journal of Multiphase Flow,1995,21(6):1 253-1 257.
[15] Huang S, IHARA A, WATANABE H, et al. Effects of solid particle properties on cavitation erosion in solid-water mixtures[J].Journal of Fluids Engineering- transactions of The Asme, 1996,118(4):749-755.
[16] DUNSTAN P J, LI S C. Cavitation enhancement of silt erosion: Numerical studies[J].Wear,2010,268(7):946-954.
[17] CHEN H S, LIU S H, WANG J D. Study on effect of microparticle’s size on cavitation erosion in solid-liquid system[J].Journal of Applied Physics,2007,101(10):1-5.
[18] SCHNEIDER G E,RAW M J.Control volume finite-element method for heat transfer and fluid flow using colocated variables-1.computational procedure[J]. Numerical Heat Transfer,1987,11(4):363-390.
[19] 陆于衡,冉红娟,史天蛟,等.翼型间隙空化数值模拟的湍流模型比较分析[J].排灌机械工程学报,2020,38(4):353-359.
[20]MEJRI I,BAKIR F,REY R.Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers [J].Journal of Fluids Engineering, 2006,128(6):1 308-1 323.
[21]王维军, 王洋, 黎义斌, 等. 基于涡动力学的离心泵内部流动诊断[J].中国农村水利水电, 2019(4):177-182,187.
[22] RUITH M R, CHEN P, MEIBURG E, et al. Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation[J]. Journal of Fluid Mechanics, 2003,486:331-378.
[23] MILLER R S, MADNIA C K, GIVI P. Numerical simulation of non-circular jets[J]. Computers & Fluids, 1995,24(1):1-25.
[24] BOERSMA B J, BRETHOUWER G, NIEUWSTADT F T M. A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet[J]. Physics of Fluids, 1998,10(4):899-909.
[25] 童秉纲,尹协远,朱克勤.涡运动理论[M].合肥: 中国科技大学出版社,2009.
PDF(12910 KB)

访问

引用

详细情况

段落导航
相关文章

/