悬浮管道水锤压力与振摆特性试验研究

吴国英 宋莉萱 来志强 武彩萍

PDF(2894 KB)
中国农村水利水电 ›› 2021 ›› (2) : 143-147.
供水工程

悬浮管道水锤压力与振摆特性试验研究

  • 吴国英1,宋莉萱1,来志强1,2,武彩萍1
作者信息 +

Experimental Research on the Water Hammer Pressure and Vibration Characteristics of Suspended Pipelines

Author information +
稿件信息 +

摘要

悬浮管道由于管道淤堵或者管道阀门启闭会在管道中产生水锤效应并导致管道产生振摆现象,水锤压力和振摆幅度会受到管流流速、管道阀门关闭时间和管道长度富余度的影响。为了研究上述因素影响,开展了悬浮管道物理模型试验,试验过程中监测了管道水锤强度和振摆幅度。试验结果表明:阀门关闭时间越短,管道流量越大,悬浮管道水锤压力和振摆幅度则越大;当阀门关闭时间过小和管道流量过大时,还会造成管道破裂;管道水锤压力会随着管道长度富余度的增长而增大,而摆动程度则在一定范围内会减小。

Abstract

Water hammer and piping vibration will be caused when the suspended pipelines are blocked up or closed. The caused water hammer pressure and vibration rate are related to the flow velocity of the water in the pipeline, the closing time of the pipeline valve and the surplus degree of the pipeline length. To study the effects of those factors on the water hammer pressure and vibration rate, model tests of suspended pipeline are carried out. In the test, the pressure of the water hammer and vibration rate of the pipeline valve are monitored. The test results show that the increase in the valve closing time and the flow velocity would increase the water hammer pressure and vibration rate of the suspended pipeline. The suspended pipeline would burst when the valve closing time is too small and the flow velocity is too large. The water hammer pressure of the pipeline increases with the increase in the surplus degree of the pipeline length, while vibration rate decreases within a certain range of the surplus degree.

关键词

悬浮管道 / 水锤压力 / 振摆幅度 / 阀门关闭时间 / 富余度

Key words

suspended pipelines / water hammer / vibration rate / valve closing time / surplus degree

基金

中央级公益性科研院所基本科研业务费专项项目;国家自然科学基金青年科学基金项目;十三五国家重点研发计划项目;十三五国家重点研发计划项目

引用本文

导出引用
吴国英 宋莉萱 来志强 武彩萍. 悬浮管道水锤压力与振摆特性试验研究[J].中国农村水利水电, 2021(2): 143-147
. Experimental Research on the Water Hammer Pressure and Vibration Characteristics of Suspended Pipelines[J].China Rural Water and Hydropower, 2021(2): 143-147

参考文献

[1]丁浩. 水电站有压引水系统非恒定流[M]. 北京: 水利电力出版社, 1984:16-26.
[2]WYLIE E B, STREETER V L. Fluid Transients[M]. New York: McGraw-Hill, 1978:10-18.
[3]吴祯祥, 杨玲霞, 李国庆, 等. 水力学[M]. 北京: 气象出版社, 1994:31-40.
[4]赵向军. 长距离输水工程水锤危害及防护措施[J]. 水利技术监督,2008(3):28-30.
[5]王娜. 泵站压力管道的水锤研究[J]. 水利规划与设计,2016(1):85-88.
[6]张旭. 核电厂长距离输水管道管材选取和水锤防护措施探讨[J]. 给水排水,2014,40(3):93-96.
[7]王玉林, 刘元成. Bentley Hammer软件在泵站水锤防护中的应用[J]. 中国水运,2012(9):86-87.
[8]JAEGER C, 王树人,刘天雄, 等. 水力不稳定流在水力发电工程中的应用[M]. 北京: 清华大学出版社,1987:100-112.
[9]刘光临, 刘竹溪. 泵系统水锤模型相似理论分析及其应用[J]. 武汉水利电力学院学报, 1986(1):80-90.
[10]伍超, 冉洪兴, 赵文谦. 调压室模型试验变态比尺的研究[J]. 水利学报, 1995(6):42-50.
[11]魏闯, 李明思, 李东伟, 等. PVC管网中支管连接方式对干管水锤压力叠加的影响[J]. 农业工程学报, 2012,28(18):88-97.
[12]HUA J, ZHANG S, FU L. Similitude criterion derivation and pipe physical property test and suitable analysis for water hammer scale model of long distance district heating pipeline[J]. Applied Thermal Engineering, 2017,125:80-90.
[13]ZHANG B, WAN W, SHI M. Experimental and numerical simulation of water hammer in gravitational pipe flow with continuous air entrainment[J]. Water, 2018,10(7):1-16.
[14]龙海涛, 苏志敏, 蔡微微. 水击试验与理论计算对比分析[J]. 中国水运, 2019,19(12):177-179.
[15]石喜,陶虎,柴媛媛, 等. 支管管径变化对枝状管网水锤压力的影响[J]. 长江科学院院报, 2020,19(12):177-179.
PDF(2894 KB)

访问

引用

详细情况

段落导航
相关文章

/