合理的水轮机关闭规律对控制水电站水力过渡过程调保参数非常关键,由于桨叶-导叶双调节的存在,轴流转桨式水轮机的关闭规律的选择和优化较为复杂。基于对轴流转桨式机组协联飞逸曲线的特性分析,提出了一种新型导叶桨叶协联关闭规律:机组发生甩负荷时,导叶一段直线或折线关闭,桨叶一段直线开启,结合数值仿真计算分析,验证了该关闭规律能够显著降低蜗壳末端最大压力,而机组转速最大上升率略有升高。为了进一步优化所得协联关闭规律,建立了以蜗壳末端最大压力和机组转速最大上升率为控制指标的导叶关闭规律非线性优化模型,基于确定的桨叶开启动作方式,采用模拟退火智能算法优化导叶两段折线关闭规律,得到了能够满足调节保证计算要求的水轮机导叶桨叶协联关闭规律,且各指标的安全裕量分配较为合理。相关结论可为轴流转桨式水轮机的关闭规律选取和优化提供参考。
Abstract
Reasonable closing law of the turbine is extremely important to the control of the hydraulic transient guarantee values in hydropower stations. Because of the regulation of both blades and guide vanes, the selection and optimization of the closing law of the Kaplan turbine is complex. A new joint movement mode of blades and guide vanes is proposed for Kaplan turbines through an analysis of the turbine runaway curves. That is, the blades quickly open as the guide vane quickly close in load rejection transient process. According to the numerical simulation results of an engineering example, the maximum pressure at the volute end is greatly reduced by adopting the closing law, while the maximum unit speed increases slightly, which verifies the effectiveness of the new closing law. Based on the determined blades opening mode, the nonlinear optimization model and simulated annealing algorithm are used to optimize the two-stage closing law of the guide vanes. The closing law that meets the regulating guarantee requirements is obtained. The conclusion provides reference for selecting the closing law of Kaplan turbines.
关键词
水电站 /
过渡过程 /
轴流转桨式水轮机 /
关闭规律
{{custom_keyword}} /
Key words
hydropower station /
hydraulic transients /
Kaplan turbine /
closing law
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]万五一, 练继建, 王俊. 明渠-结合池-暗管输水系统水力瞬变过程计算[J]. 水利学报, 2003(8):16-20.
[2]杨东升, 张芝永, 翟莎,等. 带调压室的转桨式水轮机调节系统稳定性研究[J]. 水电能源科学, 2010,28(10):115-116,172.
[3]常江, 陈光大. 轴流转桨式水轮机神经网络建模与非线性仿真[J]. 中国农村水利水电, 2004(7):82-85.
[4]陈宏川, 施彬, 陈云良, 等. 轴流转桨机组水力过渡过程中的轴向水推力研究[J]. 水电站设计, 2011(1):6-9.
[5]寿梅华. 转桨式水轮机的调节特性和稳定性分析[J]. 水利学报, 1983(1):32-41.
[6]张蓉生, 刘泽, 王立闯, 等. 基于Delaunay三角网剖分的水轮机综合特性曲线数据插值[J]. 水力发电学报, 2011(4):197-201.
[7]彭小东, 鞠小明, 高晓光. 轴流转桨式水轮机水力过渡过程计算研究[J]. 四川水利, 2009(2):15-18.
[8]CHEN S, ZHANG J, YU X D. Optimization of two-stage closure law of turbine wicket gates and its application[J]. Applied Mechanics and Materials, 2012,249-250:636-641.
[9]ZHANG J, YU X, MIAO D. Innovative closure law for pump-turbines and field test verification[J]. Journal of Hydraulic Engineering, 2015,141(3):5 014 010.
[10]齐央央, 张健, 李高会, 等. 抽水蓄能电站球阀联动-导叶滞后关闭规律研究[J]. 水电能源科学, 2009(5):176-178.
[11]KAHAWITA R. Applied hydraulic transients[J]. Springer Berlin, 2014,15(1):143-144.
[12]周天驰, 张健, 俞晓东,等. 基于模拟退火算法的水轮机导叶分段关闭规律优化[J]. 排灌机械工程学报, 2018,36(4):320-326.
[13]何国华, 解建仓, 汪妮,等. 基于模拟退火遗传算法的水资源优化配置研究[J]. 西北农林科技大学学报(自然科学版), 2016,44(6):196-202.
[14]邵琳, 王丽萍, 黄海涛,等. 梯级水电站调度图优化的混合模拟退火遗传算法[J]. 人民长江, 2010,41(3):34-37.