
间歇灌溉缓释肥施肥水平对水稻生长特性及产量的影响
何军, 张宇航, 叶磊, 钟盛建, 何天楷, 赵树君, 高明利
间歇灌溉缓释肥施肥水平对水稻生长特性及产量的影响
The Effects of Slow-release Fertilizer Levels on Rice Growth Characteristics and Yields under Alternate Wetting and Drying
水稻水肥调控是水稻获得高产的重要原因。为揭示间歇灌溉模式下不同缓释肥施肥水平对水稻生产影响,选取湖北省漳河灌区为研究区域,以水稻品种荃早优丝苗为试验材料,于2019年6-9月开展了淹水灌溉W1和间歇灌溉W2两种灌溉模式以及传统肥N1和缓释肥N2不同施肥水平[F(0.5)、F(0.75)、F(1)、F(1.25)、F(1.5)]互作条件下的水稻种植桶栽试验研究。结果表明,不同水肥处理对水稻株高、叶绿素SPAD终值的影响不显著,但在缓释肥条件下,植株株高、叶绿素SPAD值整体上在一定范围与施肥水平呈正相关,间歇灌溉模式下,N2F(1.5)处理与N2F(1)、N2F(0.75)处理差异显著,N2F(1.5)水平比N2F(1)、N2F(0.75)分别显著高出71%、91%。不同水肥处理对产量的影响显著,淹灌缓释肥W1N2F(1)处理产量最高可达18 170.29 kg/hm2,间歇灌溉传统肥W2N1F(1)处理次之,为17 826.86 kg/hm2。不同缓释肥施肥水平下淹灌模式产量比间歇灌溉平均高6.43%。传统肥条件下,间歇灌溉比淹灌产量高3.7%,缓释肥施肥水平对产量的影响最为显著。水稻种植施用缓释肥时,淹水灌溉模式更为适宜。
Water and fertilizer, two major factors affecting rice yields, have always been the focus of researchers. Zhanghe Irrigation District of Hubei Province is selected as the research area, and the rice variety Quanzaoyousimiao is used as the test material, and the barrels are used for cultivation. The main treatments are W1 (CF, continuous flooding irrigation) and W2 (AWD, alternate wetting and drying irrigation), and the secondary treatment are traditional fertilizer and slow-release fertilizer with different levels. Experimental studies on rice barrel cultivation under different irrigation modes coupled with traditional fertilizer N1 and fertilization levels [F(0.5),F(0.75),F(1),F(1.25),F(1.5)] of slow-release fertilizer are carried out from June to September in 2019. The results show that different water and fertilizer treatments have no significant effect on rice plant height, chlorophyll SPAD value, but plant height and chlorophyll SPAD value are positively correlated with slow-release fertilizer levels in a certain range in general, and under alternate wetting and drying irrigation mode, the plant height and chlorophyll SPAD value of N2F(1.5) is significantly different from N2F(1)’s and N2F(0.75)’s, specifically, the N2F(1.5) level is significantly higher than N2F(1),N2F(0.75) levels by 71% and 91%, respectively. Different water and fertilizer treatments have a significant effect on yield, and the highest yield, continuous flooding slow-release fertilizer treatment W1N2F(1) could reach 18 170.29 kg/hm2, treatment of alternate wetting and drying traditional fertilizer W2N1 followed by 17 826.86 kg/hm2. The yield of continuous flooding irrigation model is 6.43% higher than that of alternate wetting and drying irrigation. Under traditional fertilizer, the yield of alternate wetting and drying irrigation is 3.7% higher than that of continuous flooding irrigation, and the effect of slow-release fertilizer on yield is the most significant. The continuous flooding irrigation mode is more suitable when applying slow-release fertilizer in rice cultivation.
间歇灌溉 / 缓释肥 / 水稻 / 株高 / 分蘖数 / 叶绿素 / 产量 {{custom_keyword}} /
alternate wetting and drying / slow-release fertilizer / rice / height / tiller number / chlorophyll / yield {{custom_keyword}} /
表1 不同水肥处理水稻最终株高、分蘖数、SPAD值Tab.1 Final plant height, tiller number, SPAD value of rice under different water and fertilizer treatments |
灌溉模式 | 施肥种类及水平 | 株高/cm | 分蘖数/个 | SPAD |
---|---|---|---|---|
W1 | N2F(0.5) | 104.0a | 15.3a | 6.4a |
N2F(0.75) | 108.3a | 14.7a | 9.8a | |
N2F(1) | 107.7a | 12.0a | 9.6a | |
N2F(1.25) | 112.3a | 11.7a | 11.9a | |
N2F(1.5) | 114.0a | 17.0a | 10.6a | |
N1 F(1) | 112.0a | 19.7a | 7.4a | |
W2 | N2F(0.5) | 108.3a | 13.3ab | 12.2a |
N2F(0.75) | 107.7a | 11.0b | 6.9a | |
N2F(1) | 107.7a | 12.3b | 11.0a | |
N2F(1.25) | 109.7a | 8.0b | 8.5a | |
N2F(1.5) | 106.3a | 21.0a | 13.8a | |
N1 F(1) | 107.3a | 17.0ab | 7.5a |
表2 不同水肥处理水稻最终产量显著性分析Tab.2 Significance analysis of the final yield of rice under different water and fertilizer treatments |
灌溉模式 | 施肥种类及水平 | 产量/(kg·hm-2) |
---|---|---|
W1 | N2F(0.5) | 14 212.87b |
N2F(0.75) | 12 287.56c | |
N2F(1) | 18 170.29a | |
N2F(1.25) | 14 813.87b | |
N2F(1.5) | 14 978.98b | |
N1 F(1) | 17 191.35b | |
W2 | N2F(0.5) | 13 365.16c |
N2F(0.75) | 13 940.02c | |
N2F(1) | 17 128.45b | |
N2F(1.25) | 14 798.60c | |
N2F(1.5) | 11 393.19d | |
N1 F(1) | 17 826.86ac |
表3 水分缓释肥互作对产量的交互效应分析Tab.3 Interaction of water and slow-fertilizer coupling on yields |
差异来源 | III 类平方和SS | 自由度 | 均方MS | F | 显著性 |
---|---|---|---|---|---|
施肥水平 | 81 354 321 | 5 | 16 270 864 | 50.193 | 0 |
灌溉模式 | 3 342 922 | 1 | 3 342 922 | 10.312 | 0.004 |
施肥水平× 灌溉模式 | 21 807 765 | 5 | 4 361 553 | 13.455 | 0 |
误差 | 7 779 983 | 24 | 324 166 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
余乾安,李亚龙,刘路广,等.基于ORYZA_V3模型的水稻水肥综合调控模式研究[J].灌溉排水学报,2019,38(6):50-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
陈鹏,张忠学,陈帅宏,等.寒地黑土区节水灌溉下水稻对基肥氮素的吸收分配[J].灌溉排水学报,2019,38(2):36-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
孙爱华,华信,叶晓思,等.不同灌溉模式下施加控释肥对水稻生长特征及产量的影响研究[J].灌溉排水学报,2016,35(4):48-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
田广丽,李东伟,甄博,等.灌溉模式和氮肥用量对水稻分蘖期生长特征的影响[J].灌溉排水学报,2018,37(12):46-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
粟晓万,杜建军,贾振宇,等.缓/控释肥的研究应用现状[J].中国农学通报,2007(12):234-238.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
徐明岗,孙小凤,邹长明,等.稻田控释氮肥的施用效果与合理施用技术[J].植物营养与肥料学报,2005(04):487-493.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
宋付朋,张民,史衍玺,等.控释氮肥的氮素释放特征及其对水稻的增产效应[J].土壤学报,2005(04):619-627.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
邵东国,李颖,杨平富,等. 水稻节水条件下氮素的利用及环境效应分析[J].水利学报,2015,46(2):146-151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
何军,崔远来,张大鹏,等.不同水肥耦合条件下水稻干物质积累与分配特征[J].灌溉排水学报,2010,29(5):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
姚 林,郑华斌,刘建霞,等.中国水稻节水灌溉技术的现状及发展趋势[J].生态学杂志,2014,33(5):1 381-1 387.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
茆 智.水稻节水灌溉及其对环境的影响[J].中国工程科学,2002(7):8-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
胡昊,白由路,杨俐苹,等.基于SPAD-502与Green Seeker的冬小麦氮营养诊断研究[J].中国生态农业学报,2010,18(4):748-752.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
姜佰文,戴建军,王春宏,等.氮素调控对寒地玉米氮素吸收与叶片SPAD值影响的初探[J].中国土壤与肥料,2010(3):41-44,54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
裘正军,宋海燕,何勇,等.应用SPAD和光谱技术研究油菜生长期间的氮素变化规律[J].农业工程学报,2007(7):150-154.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
何军,常元莉,李雪蓉,等.节灌条件缓释肥对水稻株高、分蘖、叶绿素及产量的影响[J].中国农村水利水电,2016(3):7-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |