
导叶开度对混流式水轮机转轮叶片表面空化性能的影响
史广泰, 薛志成, 杨茜, 刘宗库
导叶开度对混流式水轮机转轮叶片表面空化性能的影响
Effect of Guide Vane Opening on Cavitation Performance of Runner Blade of Francis Turbine
由于在一些中小型水电站中,其水轮发电机组的转轮叶片表面常常会发生空化现象,较大程度地影响了机组的安全可靠运行。从某水电站的转轮叶片空化问题出发,首先对该混流式水轮机进行三维建模,然后进行全流道数值模拟,分别对不同导叶开度下转轮叶片表面压力、空泡体积分布规律进行分析。研究发现:随着水头的增加,吸力面低压区面积进一步扩大。特别是40%开度时叶片吸力面低压区面积增大最多,且随着水头的继续增加,低压区有向叶片中部移动的趋势;同时在40%开度下叶片表面空化受水头影响较大,而在100%开度下叶片表面空化受水头影响并不大,但随着导叶开度的增大,叶片表面越容易发生空化,特别是叶片吸力面出水边靠近下环处空化更明显。研究结果可为该水轮发电机组的安全稳定运行提供理论参考依据。
Because in some medium and small-scale hydropower stations, the runner blades of their hydro-generator sets often have cavitation, which affects the safe and reliable operation of hydropower units to a large extent. This paper starts from the problem of runner blades cavitation in a hydropower station. Firstly, the three-dimensional modeling of the Francis turbine is performed and then the full passage numerical simulation is carried out. Under different guide vane openings, the distribution of pressure and vapor volume on the runner blades surface are analyzed. It is found that with the increase in the head, the area of low pressure on the suction side of the blade expands further. Especially at 40 percent vane opening, the area of the low-pressure area of the suction side of the blade increases the most, and as the head continues to increase, the low-pressure area tends to move toward the middle of the blade. Meanwhile, the surface cavitation of the runner blade is greatly affected by the head under 40 percent vane opening. However, it is not greatly affected by the head under 100 percent vane opening. Meanwhile, as the opening of the vane increases, the surface of the blade becomes more prone to cavitation. The cavitation of the suction side of the blade which is near the lower ring is more obvious. The research results can provide a theoretical reference for the safe and stable operation of the hydro-generator units.
混流式水轮机 / 导叶 / 数值模拟 / 空化性能 {{custom_keyword}} /
Francis turbine / guide vane / numerical simulation / cavitation performance {{custom_keyword}} /
表1 水轮机基本参数Tab.1 Basic parameters of hydraulic turbines |
参数 | 数值 |
---|---|
额定出力/MW | 92.3 |
最大出力/MW | 107.0 |
额定水头/m | 159.3 |
最大水头/m | 184.0 |
额定流量/(m3·s-1) | 62.7 |
额定转速/(r·min-1) | 272.7 |
最大吸出高度/m | -3.0 |
表2 边界条件和求解设置Tab.2 Settings of boundaries and solution |
边界条件 | 参数 |
---|---|
进口 | 总压进口 |
出口 | 静压出口 |
壁面 | 无滑移、光滑壁面 |
工作介质 | 水 |
参考压力 | 一个大气压 |
收敛精度 | |
表3 水轮机不同运行工况下的参数Tab.3 Parameters of hydraulic turbine under different operating conditions |
工况代号 | 导叶开度/% | 水头/m |
---|---|---|
1 | 40 | 146.1 |
2 | 40 | 159.3 |
3 | 40 | 184.0 |
4 | 100 | 146.1 |
5 | 100 | 159.3 |
6 | 100 | 184.0 |
图3 最低水头下压力面的压力分布Fig.3 Pressure distribution on pressure side at the lowest head condition |
图5 额定水头下压力面的压力分布Fig.5 Pressure distribution on pressure side at the rated head condition |
图7 最高水头下压力面的压力分布Fig.7 Pressure distribution on pressure side at the highest head condition |
图9 运行工况1下叶片空泡体积分布Fig.9 Volume distribution of cavitation bubbles of blade under operating condition 1 |
图10 运行工况2下叶片空泡体积分布Fig.10 Volume distribution of cavitation bubbles of blade under operating condition 2 |
图11 运行工况3下叶片空泡体积分布Fig.11 Volume distribution of cavitation bubbles of blade under operating condition 3 |
图12 运行工况4下叶片空泡体积分布Fig.12 Volume distribution of cavitation bubbles of blade under operating condition 4 |
图13 运行工况5下叶片空泡体积分布Fig.13 Volume distribution of cavitation bubbles of blade under operating condition 5 |
1 |
罗丽,李景悦.混流式水轮机内部空化流动数值模拟[J].人民长江,2016,47(13):79-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
阮辉,廖伟丽,罗兴锜,等.叶片低压边的轴面位置对高水头水泵水轮机空化性能的影响[J].农业工程学报,2016,32(16):73-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
杨宛利.高水头混流式水泵水轮机空化特性研究[D].西安:西安理工大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陈庆光,吴玉林,刘树红,等.轴流式水轮机全流道内非定常空化湍流的数值模拟[J].机械工程报,2006(6):211-216.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张梁,吴玉林,刘树红,等.混流式水轮机内部流场的三维空化湍流计算[J].工程热物理学报,2007(4):598-600.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
赵飞.混流式水轮机空化流动特性分析[J].西华大学学报(自然科学版),2012,31(02):69-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
李琪飞,陈祥玉,权辉,等.水泵水轮机小开度下的空化特性分析[C]//水力机械学科发展战略研讨会暨第11届全国水力机械及其系统学术年会论文集,2018:123-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
宁楠,李萍.高水头水泵水轮机空化特性分析[J].中国农村水利水电,2019(6):116-120.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王磊,娄瑜,王照福.混流式模型水轮机空化流动分析与试验研究[J].排灌机械工程学报,2014,32(9):771-775.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
高翔.潮汐电站贯流式水轮机尾水管流动特性研究[J].武汉大学学报(工学版),2019,52(7):594-599.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
田文文,刘小兵,卢加兴,等.高水头水电站混流式水轮机导叶端面空化的数值模拟[J].中国农村水利水电,2019(8):211-216.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
肖鑫明,桂林.基于Mixture模型对翼形空化的数值模拟[J].中国农村水利水电,2019(2):182-186.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张乐福,张亮,张梁,等.混流式水轮机的三维空化湍流计算[J].水力发电学报,2008(1):135-138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
周凌九,王正伟.基于空化流动计算的混流式水轮机尾水管的压力脉动[J].清华大学学报(自然科学版),2008(6):972-976.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
胡秀成,张思青,张立翔.基于CFD的长短叶片水轮机转轮研究[J].水电能源科学,2009,27(3):144-146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
郑小波,罗兴锜,邬海军.基于CFD分析的轴流式转轮叶片刚强度分析[J].水力发电学报,2006(5):121-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
邬海军,郭鹏程,廖伟丽,等.ANSYS在水轮机部件流固耦合振动分析中的应用[J].水电能源科学,2004(4):64-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |