
块石戗堤先行进占施工的土石围堰稳定性研究
惠建伟, 李季, 段锋, 袁浩然, 贺昌海
块石戗堤先行进占施工的土石围堰稳定性研究
Research on the Stability of Earth-rock Cofferdam Constructed by the Method of the Rock Dike Filling Ahead
对于内侧采用含砾黏土、外侧采用块石戗堤的土石围堰结构,为研究其进占方法对围堰稳定性的影响,以邕宁水利枢纽一期枯水土石围堰为工程背景,首先提出了“块石戗堤先行,含砾黏土跟进”的施工方案,根据块石及含砾黏土边坡和跟进距离的几何关系确定了含砾黏土侵入距离的计算公式;其次,基于流固耦合理论,研究了不同基坑排水速度时,渗流场和应力场耦合作用下围堰的工作状态,利用有限元分析软件ABAQUS结合有限元强度折减法,对含砾黏土侵入块石戗堤底部时形成的围堰进行了计算,分析了围堰的整体变形、剪切破坏及失稳特征。结果表明:随折减系数增大,塑性区从外侧堰底开始发育并逐渐形成贯通区,最大变形值出现在外侧堰底;含砾黏土跟进距离大于等于临界值16.22 m时,跟进距离的选取对堰坡稳定性的影响较小,而跟进距离小于16.22 m时,含砾黏土侵入块石戗堤底部数量过多,导致外侧堰体抗滑稳定承载力下降,围堰稳定性受到威胁。为保证围堰的安全稳定,建议将含砾黏土跟进距离控制在17 m左右。
In order to study the influence of filling method on the stability of cofferdam which has grain-containing clay on the inside and block stone on the outside based on the 1st earth-rock cofferdam of Yongning Water Conservancy Project, this paper firstly proposes the filling method of“block stone dike first, grain-containing clay follow-up” and determines the formula for calculating the intrusion distance of grain-containing clay according to the geometric relationship between the slope of block stone and the grain-containing clay and the follow-up distance. Secondly, based on the fluid-solid coupling theory, it studies the cofferdam working state influenced by seepage field and stress field under different drainage velocity of the foundation pit and combined ABAQUS with finite element strength reduction method to calculate the cofferdam in which grain-containing clay has intruded to the bottom of the dike. The results show that with the increase in reduction coefficients, the plastic zone develops from the bottom of the outside and gradually forms a penetrating plastic zone, and the maximum deformation appears at the bottom of the outside. The stability of the cofferdam is less influenced by the follow-up distance of grain-containing clay when it is more than or equal to the critical value of 16.22 m.When the follow-up distance is less than 16.22 m, the amount of grain-containing clay intrusion into the bottom of the dike is too large, which leads to the decrease in the bearing capacity of the cofferdam, and the stability of the cofferdam is threatened. In order to ensure the safety and stability of the cofferdam, it is recommended to control the follow-up distance of the grain-containing clay to be around 17 m.
土石围堰 / 进占方法 / 流固耦合 / 强度折减 / 抗滑稳定 {{custom_keyword}} /
earth-rock cofferdam / filling method / fluid-solid coupling theory / strength reduction method / anti-slide stability {{custom_keyword}} /
表1 跟进距离(S)与侵入距离(L)的关系 |
L/m | 0 | 5.08 | 10.16 | 15.24 | 20.32 | 25.40 | 30.48 | 35.56 | 40.64 | 45.72 | 50.8 |
---|---|---|---|---|---|---|---|---|---|---|---|
S/m | 30.44 | 28.41 | 26.38 | 24.34 | 22.31 | 20.28 | 18.25 | 16.22 | 14.18 | 12.15 | 10.12 |
表2 堰址区材料的主要指标建议值 |
材料类型 | 干容重γd / (km·m-3) | 压缩模量 Ey /MPa | 黏聚力ccu / kPa | 内摩擦角φcu / (°) | 孔隙率 n |
---|---|---|---|---|---|
含砾黏土 | 17.4 | 6.9 | 22.0 | 25 | 0.374 |
戗堤块石 | 22.5 | 400.0 | 0 | 30 | 0.500 |
旋喷混凝土 | 24.5 | 20 000.0 | 1 200.0 | 40 | 0.015 |
灰岩 | 27.0 | 17 200.0 | 2 720.0 | 46 | 0.048 |
表3 堰址区材料渗透系数 |
材料类型 | 含砾黏土 | 戗堤块石 | 旋喷混凝土 | 灰岩 |
---|---|---|---|---|
渗透系数 k/(m·s-1) | 水平5×10-6 | 1.0×10-5 | 1.22×10-10 | 1.2×10-9 |
竖直 4.7×10-7 |
表4 含砾黏土粒径分布试验结果 |
成分 | 石砾 | 砂粒 | 粉粒 | 黏粒 |
---|---|---|---|---|
粒径/mm | 60~2 | 2~0.075 | 0.075 | <0.005 |
比例/% | 7.15 | 15.10 | 49.20 | 28.55 |
1 |
水利电力部水利水电建设总局.水利水电工程施工组织设计手册(第一卷)[M].北京:中国水利水电出版社,1996.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
任大春,吴昌瑜,朱国胜.三峡二期围堰饱和-非饱和渗流分析[J].长江科学院院报,1997,14(2):44-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
李术才,李树忱,朱维申,等. 泰安抽水蓄能电站围堰稳定性的流-固耦合分析[J]. 岩石力学与工程学报,2004,41(9):1 074-1 078.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张信贵,许胜才,易念平. 基于流固耦合理论的饱和-非饱和土开挖边坡稳定性分析[J].水利水运工程学报,2016(3):10-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
贾苍琴,黄茂松,王贵和. 非饱和非渗流作用下土坡稳定分析的强度折减有限元方法[J]. 岩石力学与工程学报,2006,26(6):1 290-1 296.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
卢晓春,田 斌,孙开畅.深厚覆盖层上土石围堰渗流及边坡稳定性研究[J].人民长江,2014,45(9):55-58,61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈卫忠,伍国军,贾善坡. ABAQUS在隧道及地下工程中的应用[M]. 北京:中国水利水电出版社,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
夏卫生,雷廷武,刘贤赵,等. 土壤水分特征曲线的推算[J]. 土壤学报,2003,40(2):311-315.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
费 康,彭 劼. ABAQUS岩土工程实例详解[M].北京:人民邮电出版社,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
薛 雷,孙 强,秦四清,等. 非均质边坡强度折减法折减范围研究[J]. 岩土工程学报,2011(2):275-280.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
刘金龙,栾茂田,赵少飞,等. 关于强度折有限元方法中边坡失稳判据的讨论[J]. 岩土力学,2005,26(8):1 345-1 348.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李瑛,林楚凌,惠建伟,等. 邕宁水利枢纽一期临时土石围堰施工仿真及BIM可视化[J]. 中国农村水利水电,2020(5):92-97.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |