
基于改进肾脏算法的梯级水库长期发电优化调度研究
赵晓凤, 翁朝晖, 陈华
基于改进肾脏算法的梯级水库长期发电优化调度研究
Optimizing Long-term Power Operation of Cascade Reservoir Based on Improved Kidney Algorithm
梯级水库优化调度是一种实现水资源合理分配与高效利用,提升水电系统运行管理水平的重要方法。改进肾脏算法为高效求解梯级水库优化调度提供了一条有效途径。肾脏算法是一种新颖的自然启发式优化算法,因其参数少、寻优能力强、稳健性高,已被广泛应用和认可。本研究对标准肾脏算法的寻优原理进行了阐述,针对该算法的种群多样性低和收敛速度慢缺陷,采用含缩放因子的运移策略和自适应调参策略对其改进,提出了改进的肾脏算法。以某梯级水库长期发电优化调度为例,计算结果表明:相比标准肾脏算法,改进的肾脏算法可使梯级水库多年平均发电量增加3.2亿kWh(增幅为4.03%)和弃水量减少17.54%。引入的改进策略有效克服了标准肾脏算法的早熟缺陷,提高了种群多样性和收敛速度。
Cascade reservoir operation optimization plays a vital role in improving water allocation and promoting hydropower system management. The Improved Kidney Algorithm (IKA) provides an effective approach to the cascade reservoir operation model. The Kidney Algorithm (KA) is a novel nature-inspired optimization algorithm as well as widely applied and approved owing to its fewer parameters, superior search efficiency and robustness. In this paper, the optimization mechanism of KA is presented. To overcome the drawbacks of low diversity in population and inferior convergence, scaling factor-based movement strategy and adaptive strategy are introduced to configure the IKA. The feasibility and effectiveness of IKA is tested by solving cascade reservoir operation model. The results point out that: the IKA could significantly increase the hydropower generation (320 million kWh) of the cascade reservoir by 4.03% and largely decrease the spilled water volume by 17.54% in comparison to the KA. Mmeanwhile, the integrated strategies could effectively conquer the prematurity of the standard KA algorithm as well as lift the population diversity and algorithm convergence.
改进肾脏算法 / 全局搜索 / 自适应策略 / 梯级水库 / 发电调度 {{custom_keyword}} /
improved kidney algorithm / global search / adaptive strategy / cascade reservoir / hydropower operation {{custom_keyword}} /
表1 某梯级水库/水电站特征参数Tab.1 Characteristic parameters of cascade reservoir |
水库/ 电站 | 死水位/ m | 汛限水位/ m | 正常蓄水位/ m | 装机容量/ MW | 保证出力/ MW | 机组最大过流/ (m3·s-1) | 综合出力 系数 |
---|---|---|---|---|---|---|---|
A | 350 | 391.8 | 400 | 4×660 | 312 | 4×280 | 8.5 |
B | 160 | 192.2 | 200 | 4×310 | 187 | 4×325 | 8.5 |
表2 5种算法的梯级水库优化调度结果对比Tab.2 Result of cascade reservoir optimization by using five algorithms respectively |
情景 | 算法 | 年发电量/ 亿kWh | 年弃水量/ 亿m3 | 年发电 保证率/% | 寻优时间/ s |
---|---|---|---|---|---|
丰水年 | DP (理论最优) | 86.7 | 9.9 | 100 | 807 |
GA | 81.5 | 12.7 | 100 | 189 | |
AGA | 83.1 | 11.5 | 100 | 229 | |
KA | 82.3 | 12.0 | 100 | 213 | |
IKA | 86.2 | 10.8 | 100 | 237 | |
平水年 | DP (理论最优) | 83.2 | 2.8 | 98.1 | 853 |
GA | 78.8 | 5.1 | 95.6 | 192 | |
AGA | 80.4 | 4.2 | 97.1 | 231 | |
KA | 79.5 | 4.5 | 95.9 | 213 | |
IKA | 82.6 | 3.4 | 97.7 | 238 | |
枯水年 | DP (理论最优) | 79.1 | 0.0 | 97.2 | 871 |
GA | 75.8 | 0.7 | 90.3 | 204 | |
AGA | 77.3 | 0.0 | 93.8 | 246 | |
KA | 76.2 | 0.6 | 91.1 | 227 | |
IKA | 78.7 | 0.0 | 96.4 | 255 | |
平均值 | DP (理论最优) | 83.0 | 4.2 | 98.4 | 844 |
GA | 78.7 | 6.2 | 95.3 | 195 | |
AGA | 80.3 | 5.2 | 97.0 | 235 | |
KA | 79.3 | 5.7 | 95.6 | 218 | |
IKA | 82.5 | 4.7 | 98.0 | 243 |
1 |
郭生练,陈炯宏,刘攀,等. 水库群联合优化调度研究进展与展望[J]. 水科学进展,2010(4):496-503.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
孙平,王丽萍,蒋志强,等. 两种多维动态规划算法在梯级水库优化调度中的应用[J].水利学报,2014,45(11):1 327-1 335.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
赵志鹏,廖胜利,程春田,等. 梯级水电站群中长期优化调度的离散梯度逐步优化算法[J].水利学报,2018,49(10):1 243-1 253.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陈国轩 许银山. 基于合同电量的梯级水电站优化调度研究[J]. 中国农村水利水电,2011(5):159-161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
白涛,黄强. 仿生算法在水库(群)优化调度应用中的综述[J]. 中国农村水利水电,2009(9):154-157.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
陈立华,梅亚东,董雅洁,等. 改进遗传算法及其在水库群优化调度中的应用[J]. 水利学报,2008,39(5):550-556.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王少波,解建仓,孔珂. 自适应遗传算法在水库优化调度中的应用[J].水利学报,2006,37(4):480-485.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
徐刚,马光文,梁武湖,等. 蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李冰,孙辉,王坤,等. 自适应人工蜂群算法在梯级水库优化调度中的应用[J].水电能源科学,2016,34(8):59-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
冯仲恺,牛文静,程春田,等.梯级水库群优化调度精英集聚蛛群优化方法[J].水利学报,2016,47(6):826-833.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
原文林,吴泽宁. 协同差分演化算法在梯级水库中长期发电优化调度中的应用研究[J].水力发电学报,2012,31(3):39-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
易 灵,卢治文,黄 锋,等.红水河龙滩、岩滩梯级水库汛末优化调度策略[J].武汉大学学报(工学版),2020,53(4):303-309.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李庚,邹进,张兵. 大变异遗传退火法及其在水库优化调度中的应用[J]. 中国农村水利水电,2010(3):148-151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张代青,沈春颖,于国荣,等.基于河道流量生态服务效应的水库生态价值优化调度[J].武汉大学学报(工学版),2020,53(2):101-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
蔡卓森,戴凌全,刘海波,等.基于支配强度的NSGA-II改进算法在水库多目标优化调度中的应用[J]. 武汉大学学报(工学版),2020,53(11):1-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
郑慧涛,梅亚东,胡挺,等. 改进差分进化算法在梯级水库优化调度中的应用[J].武汉大学学报(工学版),2013,46(1):57-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
黎育红,程心环,周建中,等.混沌粒子群微分进化算法及其在水库发电优化调度中的应用[J]. 中国农村水利水电,2011(12):167-171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
柯琪,温洁嫦. 基于缩放因子和协作算子的肾脏算法[J]. 计算机科学与应用,2018,8(4):472-479.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |