
地下水人工回灌物理堵塞特征及机理试验分析
黄修东, 李伟, 孙世霞
地下水人工回灌物理堵塞特征及机理试验分析
Experimental Research on the Characteristics and Mechanism of Clogging during Artificial Groundwater Recharge
通过砂柱试验模拟了填砾石滤料雨洪水地下水人工回灌过程,通过3组对比试验分析了砾石滤料的厚度和砾石的粒径对物理堵塞控制效果的影响。试验结果表明,砾石反滤层能够在很大程度上去除回灌水中的悬浮物,进而起到控制堵塞,提高补给效率的作用。砾石反滤层的厚度和粒径选择对堵塞的控制效果起到关键作用,反滤层厚度越大,对堵塞的控制效果越好。反滤层对回灌水悬浮物的去除作用是有限的,而且随着时间的延长,到达反滤层和砂样界面的悬浮物浓度变大,因此反滤层并不能完全避免堵塞的发生,必须定期对反滤层底部的淤泥层进行处理。
The gravel filter effects on suspended matters and the control effect on clogging are analyzed by using storm water gravel infiltration column experiments. Three groups of contrast experiments are used to analyze the influence on controlling clogging of the gravel thickness and the gravel particle difference.The results show that gravel filter plays an important role in controlling clogging and improving recharge efficiency by the great removal ability on the suspended matters in the recharge water. The choices of the thickness and the particle size of the gravel filter played important roles in control effect on clogging, which is manifested as the thicker the graver filter, the better control effect.
人工回灌 / 雨洪水 / 反滤层 / 悬浮物 / 物理堵塞 / 出流速率 {{custom_keyword}} /
artificial recharge / inverted filter / storm water / suspended matters / physical clogging / outflow rate {{custom_keyword}} /
表1 填滤料雨洪渗滤试验分组表Tab.1 Grouping table of rain flood infiltration test for filter materials |
试验 组次 | 砂样高度/ cm | 反滤层厚/ cm | 反滤层滤料 粒径/mm | 持续时间/ h |
---|---|---|---|---|
1 | 90 | 无反滤层 | 192 | |
2 | 90 | 40 | 13 | 372 |
3 | 90 | 60 | 13 | 456 |
4 | 90 | 60 | 9 | 624 |
图3 砾石滤料附着回灌水悬浮物颗粒照片Fig.3 Photos of suspended matter particles attached to gravel filter material |
图4 回灌前后淤泥层悬浮物粒径分布曲线Fig.4 Particle size distribution curve of suspended solids in silt layer before and after recharge |
1 |
刘家祥.地下水人工回灌试验研究[J].水文地质工程地质,1980(1):31-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
李旺林,刘长余,汤怀义.地下水库设计理论与工程实践[M].郑州:黄河水利出版社,2012:6-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
郑西来,单蓓蓓,崔 恒,等.含水层人工回灌物理堵塞的实验与数值模拟[J].地球科学(中国地质大学学报),2013,38(6):1 321-1 326.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
单蓓蓓,郑西来,乔振基,等.人工回灌过程中含水介质物理堵塞的试验研究[J].中国海洋大学学报(自然科学版),2013,43(10):97-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李 鹏,邢国章,张 院,等.北京地下水人工回灌悬浮物堵塞试验研究[J].节水灌溉,2015(10):63-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
云桂春,成徐州.人工地下水回灌[M].北京:中国建筑工业出版社,2004:30-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
田 园,张原秀,孙雪峰.黄淮海平原地下水人工补给[M].北京:水利电力出版社,1990:126-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘贯群,岳彩东,王松禄,等.平度市地下水人工回灌补源试验研究[J].中国海洋大学学报(自然科学版),2018,48(9):100-107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
翟世奎,张怀静,范德江,等.长江口及其邻近海域悬浮物浓度和浊度的对应关系[J].环境科学学报,2005(5):693-699.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |