
云南降水的5个统计指标及其空间分布
刘有梅, 王龙, 余航, 和梅辉, 高瑞, 王葵
云南降水的5个统计指标及其空间分布
Five Statistical Indicators of Precipitation in Yunnan and Their Spatial Distribution
利用云南29个气象站1960-2014年的日降水数据,计算集中指数(Concentration Index,CI)、降水集中指数(Precipitation Concentration Index,PCI)、降水集中度(Precipitation Concentration Degree,PCD)、降水集中期(Precipitation Concentration Period,PCP)、变差系数(Coefficient of Variation,CV)5个统计指标,分析了各指标之间的关系,并讨论了各指标的空间分布。结果表明:①CI介于0.62~0.71之间,平均为0.67,日降水高度集中。CI与年降水量、降水日数的相关系数分别为-0.50、-0.93,具有显著的负相关关系(α=0.05),年降水量和降水日数较少的地区,CI较大。CI与经度的相关系数为0.64,具有显著的正相关关系(α=0.05)。②PCI介于11.95~21.48之间,其中,3%的站点降水高度集中,52%的站点降水集中,45%的站点降水中度集中。PCD介于0.30~0.74之间,滇西北和滇东南地区的PCD较小。PCP的分析结果表明,云南降水主要集中在7、8月份。③CI和PCI、PCD分别关注降水的等级分布和集中程度,PCP则关注集中的时间段。PCI与PCD的空间分布情况基本上是一致的,且二者的相关系数为0.90,具有显著的正相关关系(α=0.05),故二者在一定程度上可以相互替换。采用CI、PCI和PCP 3种指标可以较好地描述降水的年内等级分布、集中程度和集中时段。④CV介于0.11~0.21之间,降水的年际变化随着纬度的减小、年降水量的增多呈减小的趋势,相关系数分别为0.39、-0.74;而年降水量随着海拔和纬度的升高呈下降的趋势,相关系数分别为-0.45、-0.53。
Based on the daily precipitation data of 29 meteorological stations in Yunnan from 1960 to 2014, five statistical indexes are calculated, including the Concentration Index (CI), Precipitation Concentration Index (PCI), Precipitation Concentration Degree (PCD), Precipitation Concentration Period (PCP) and Coefficient of Variation (CV). The relationship between each index is analyzed, and the spatial distribution of each index is discussed. The results show that ① CI ranges from 0.62 to 0.71, with an average of 0.67, and the daily precipitation is highly concentrated. The correlation coefficients between CI and annual precipitation and precipitation days are -0.50 and -0.93, respectively, which have a significant negative correlation (α=0.05). CI is larger in areas with less annual precipitation and precipitation days. The correlation coefficient between CI and longitude is 0.64, which has a significant positive correlation (α=0.05). ② PCI ranges from 11.95 to 21.48, in which 3% of the stations are highly concentrated, 52% of the stations are concentrated, and 45% of the stations are moderately concentrated. PCD ranges from 0.30 and 0.74, and PCD in northwestern and southeastern Yunnan is smaller than that in other parts of Yunnan. The results of PCP analysis show that the precipitation in Yunnan is mainly concentrated in July and August. ③ CI, PCI and PCD pay attention to the grade distribution and concentration degree of precipitation respectively, while PCP pays attention to the period of concentration. The spatial distribution of PCI and PCD is basically the same, and the correlation coefficient between the two is 0.90, which has a significant positive correlation (α=0.05), so they can replace each other to some extent. The annual grade distribution, concentration degree and concentration period of precipitation can be well described by using CI, PCI and PCP. ④ CV is between 0.11 and 0.21, the interannual variation of precipitation decreases with the decrease in latitude and the increase in annual precipitation, the correlation coefficient are 0.39 and -0.74 respectively, while the annual precipitation decreases with the increase of elevation and latitude, the correlation coefficient are -0.45 and -0.53 respectively.
统计特征 / 降水 / 空间分布 / 云南 {{custom_keyword}} /
statistical characteristic / precipitation / spatial distribution / Yunnan {{custom_keyword}} /
表1 降水统计指标的计算方法Tab.1 Calculation method of precipitation statistical index |
指标 | CI | PCI | PCD、PCP | CV |
---|---|---|---|---|
定义 | 基于日降水数据定义一定时期内降水发生在某个降水等级的频数,分析降水在某个地区各个降水等级的年内分布特征及降水的极端程度。 | 基于月降水数据定量地描述降水模式在时间及季节上的相对分布,量化降水在某地区的年内分布。 | 引入向量特征,基于月降水数据来分析降水年内的时间分配特征,量化降水的年内集中程度。 | 反映年降水量的年际变化规律,能够表征某一地区降水的年际变化程度。CV的大小反映了年降水量的逐年变化的相对大小。 |
计算 公式 | CI= 其中,a、b采用最小二乘法计算,N代表类数。 | PCI=100× | PCD= PCP= 式中:Ri 表示某测站第i年的总降水量;rij 为第i年第j月的总降水量; | CV= 式中:n为资料年数;Ri 为各年的年降水量;R为多年降水总量的平均值。 |
特点 | 将降水分多个等级,评价了不同等级的降水量对总降水量的贡献。 | 计算简便、物理意义直观。可划分为四个等级来表征年内降水的集中程度,如 | 表征年内降水的集中程度,明确年内降水集中的具体时段。其中,PCD越接近1,年内降水分布越集中。 | 通过标准差和平均值的比率来消除变量的维数,即在计算时消除了测站本身降水的差异性,常和其余几个降水统计指标一起使用来共同表征降水的年内、年际特征。 |
表2 云南省各站点的地理信息及各指标计算结果(1960-2014年)Tab.2 Geographic information of each site in Yunnan Province and calculation results of various indicators (1960-2014) |
台站 | CI | PCI | CV | 多年平均降水量/ mm | 经度/(°) | 纬度/(°) | 海拔/m | 集中期/ 月 | Ni /% | PCD |
---|---|---|---|---|---|---|---|---|---|---|
广南 | 0.70 | 15.45 | 0.15 | 1 016.44 | 105.07 | 24.07 | 1 249.60 | 7.11 | 20.42 | 0.53 |
屏边 | 0.70 | 14.62 | 0.13 | 1 624.05 | 103.68 | 22.98 | 1 414.10 | 7.73 | 22.69 | 0.53 |
蒙自 | 0.68 | 15.54 | 0.18 | 840.55 | 103.38 | 23.38 | 1 300.70 | 7.72 | 24.99 | 0.52 |
江城 | 0.62 | 15.64 | 0.11 | 2 233.93 | 101.85 | 22.58 | 1 120.50 | 8.07 | 28.79 | 0.57 |
勐腊 | 0.67 | 15.49 | 0.15 | 1 517.11 | 101.57 | 21.48 | 631.90 | 7.76 | 26.59 | 0.55 |
元江 | 0.71 | 15.35 | 0.20 | 794.85 | 101.98 | 23.60 | 400.90 | 7.71 | 24.25 | 0.49 |
思茅 | 0.65 | 16.52 | 0.14 | 1 487.37 | 100.97 | 22.78 | 1 302.10 | 8.05 | 27.53 | 0.59 |
景洪 | 0.69 | 15.39 | 0.15 | 1 156.45 | 100.78 | 22.00 | 582.00 | 7.99 | 24.40 | 0.54 |
澜沧 | 0.63 | 16.20 | 0.12 | 1 590.56 | 99.93 | 22.57 | 1 054.80 | 8.16 | 29.16 | 0.60 |
临沧 | 0.63 | 16.20 | 0.14 | 1 145.58 | 100.08 | 23.88 | 1 502.40 | 8.26 | 29.22 | 0.59 |
泸西 | 0.68 | 15.86 | 0.18 | 906.17 | 103.77 | 24.53 | 1 704.30 | 7.71 | 25.43 | 0.54 |
玉溪 | 0.67 | 16.06 | 0.18 | 890.80 | 102.55 | 24.35 | 1 636.80 | 7.81 | 25.77 | 0.55 |
景东 | 0.68 | 16.08 | 0.16 | 1 108.01 | 100.87 | 24.47 | 1 162.30 | 8.00 | 25.11 | 0.57 |
瑞丽 | 0.64 | 16.59 | 0.15 | 1 406.62 | 97.85 | 24.02 | 776.60 | 7.92 | 27.91 | 0.61 |
沾益 | 0.69 | 16.17 | 0.19 | 968.70 | 103.83 | 25.58 | 1 898.70 | 7.73 | 24.89 | 0.54 |
昆明 | 0.68 | 17.05 | 0.20 | 984.50 | 102.68 | 25.02 | 1 893.40 | 7.94 | 25.43 | 0.60 |
楚雄 | 0.68 | 17.95 | 0.21 | 850.02 | 101.55 | 25.03 | 1 824.10 | 7.86 | 24.99 | 0.62 |
元谋 | 0.69 | 18.82 | 0.19 | 632.07 | 101.87 | 25.73 | 1 120.60 | 8.03 | 24.71 | 0.65 |
大理 | 0.70 | 16.48 | 0.19 | 1 045.28 | 100.18 | 25.70 | 1 990.50 | 8.21 | 23.73 | 0.56 |
保山 | 0.67 | 15.37 | 0.16 | 970.37 | 99.17 | 25.12 | 1 653.50 | 8.00 | 25.65 | 0.51 |
腾冲 | 0.62 | 15.19 | 0.14 | 1 478.00 | 98.50 | 25.02 | 1 654.60 | 8.01 | 29.37 | 0.55 |
会泽 | 0.68 | 17.12 | 0.17 | 781.88 | 103.28 | 26.42 | 2 110.50 | 7.85 | 25.50 | 0.61 |
华坪 | 0.68 | 21.48 | 0.19 | 1049.88 | 101.27 | 26.63 | 1 230.80 | 8.20 | 25.76 | 0.74 |
丽江 | 0.63 | 20.00 | 0.15 | 960.08 | 100.22 | 26.85 | 2 380.90 | 8.30 | 28.33 | 0.71 |
昭通 | 0.69 | 16.79 | 0.17 | 693.27 | 103.72 | 27.35 | 1 949.50 | 7.75 | 25.74 | 0.60 |
维西 | 0.65 | 14.53 | 0.15 | 946.72 | 99.28 | 27.02 | 2 326.10 | 7.08 | 26.90 | 0.36 |
中甸 | 0.64 | 18.47 | 0.16 | 629.60 | 99.70 | 27.83 | 3 276.70 | 8.16 | 28.98 | 0.60 |
贡山 | 0.63 | 11.95 | 0.15 | 1 707.74 | 98.68 | 27.75 | 1 583.30 | 7.21 | 28.72 | 0.30 |
德钦 | 0.67 | 15.17 | 0.20 | 637.24 | 98.92 | 28.48 | 3 319.00 | 7.03 | 26.46 | 0.47 |
图4 各指标相关关系图(R:相关系数;α:显著性水平)Fig.4 Correlation diagram of various indicators (R: correlation coefficient; α: significance level) |
表3 PCI等级划分表Tab.3 Classification of the Precipitation Concentration Index |
PCI | <10 | 11~15 | 16~20 | >20 |
---|---|---|---|---|
集中等级 | 均匀 | 中度集中 | 集中 | 高度集中 |
表4 各指标与经纬度、海拔相关系数表Tab.4 Correlation coefficients of various indexes with latitude, longitude and elevation |
![]() |
1 |
BENNETTBREE, LEONARDMICHAEL,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
MARTIN‐VIDEJAVIER. Spatial distribution of a daily precipitation concentration index in peninsular Spain[J]. International Journal of Climatology, 2004,24(8):959-971.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
佟晓辉, 刘向培, 贾庆宇, 等. 1960-2011年中国日降水集中程度的时空变化特征[J]. 气候与环境研究,2017(3):301-314.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
JOHN E OLIVER. Monthly precipitation distribution: a comparative index[J]. The Professional Geographer, 1980,32(3):300-309.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
ROYÉD.,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
冯彦, 李运刚. 哀牢山——元江河谷对区域地理分异的影响[J]. 地理学报, 2010(5):595-604.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |