
基于维系生态流量的山丘区地下水可开采量计算方法探析
许拯民, 金中天, 唐世南, 潘扎荣
基于维系生态流量的山丘区地下水可开采量计算方法探析
Analysis on the Calculation Method of Groundwater Sustainable Yield in Hilly Areas based on Ecological Flows
地下水可开采量通常作为区域地下水合理开发利用阈值上限,是制定地下水治理和保护管控指标的首要依据。围绕把水资源作为最大的刚性约束,以水而定、量水而行,以维持山丘区地下水排泄结构稳定为目标,提出了以天然基径比为参照的山丘区地下水可开采量计算方法—基径比关系曲线法;以保证河道内生态环境需水量为目标,提出了以水资源开发利用程度为控制指标的山丘区地下水可开采量计算方法—地表水可利用量控制法。以赤峰市山丘区地下水可开采量计算为例,结果表明:赤峰市山丘区地下水可开采量为4.07 亿m3,计算结果较为合理,计算结果与方法可推动赤峰市山丘区地下水实现合理开发利用与保护,维护区域生态安全,为我国北方山丘区地下水可开采量评价提供研究参考。
The sustainable yield of groundwater is usually referred as the maximum threshold of groundwater exploitation and utilization at regional level, and it is an important control indicator for groundwater governance and protection. With the goal of maintaining the stability of the groundwater drainage structure in the hilly area, a method for calculating the recoverable amount of groundwater in the hilly area based on the natural base-diameter ratio—base-diameter ratio relationship curve method is proposed; to ensure the water demand of the ecological environment in the river course, A method for calculating the recoverable amount of groundwater in the hilly area, which takes the degree of water resources development and utilization as the control index, is proposed—the control method of the available surface water. It takes Chifeng City as an example, the sustainable yield of ground water in hilly areas is 407 million m3. The result matches the actual situation in Chifeng City therefore proving the calculation is rational. The yield in Chifeng City can promote the acceptable exploitation and sustainable use of groundwater, and maintain ecological security in that region. It can also be taken as a research reference for calculating sustainable yield of groundwater in hilly areas in China.
山丘区 / 地下水可开采量 / 基径比关系曲线法 / 地表水可利用量控制法 {{custom_keyword}} /
hilly areas / sustainable yield of groundwater / Base Flow-Runoff Ratio Curve / Available Surface Water Control Method {{custom_keyword}} /
图2 赤峰市嵌套各水资源三级区基径比关系曲线Fig.2 Base Flow-Runoff Ratio Curve of the nested water resources three-level area in Chifeng City |
表1 基径比关系曲线法计算结果 (亿m3)Tab.1 Calculation results of Base Flow-Runoff Ratio Curve |
水资源三级区 | 2001-2016年多年平均 | |||||
---|---|---|---|---|---|---|
天然 径流量 | 天然河川 基流量 | 实际 开采量 | 开采 净消耗量 | 不合理 开采量 | 可开采量 | |
合计 | 14.59 | 1.55 | 9.69 | 7.77 | 5.62 | 4.07 |
西拉木伦河及老哈河 | 10.54 | 0.93 | 7.79 | 6.26 | 4.31 | 3.48 |
乌力吉木仁河 | 1.86 | 0.14 | 1.25 | 1.10 | 1.10 | 0.15 |
西辽河下游区间(苏家堡以下) | 0.62 | 0.06 | 0.39 | 0.36 | 0.20 | 0.19 |
沿渤海西部诸河 | 0.49 | 0.12 | 0.22 | - | - | 0.22 |
滦河山区 | 0.25 | 0.16 | 0.001 | 0.001 | 0.001 | - |
内蒙古高原东部 | 0.82 | 0.14 | 0.04 | 0.04 | 0 | 0.04 |
表2 地表水可利用量控制法计算结果 (亿m3)Tab.2 Calculation results of available surface water control method |
水资源三级区 | 2001-2016年多年平均 | |||
---|---|---|---|---|
地表水资源量 | 生态需水量 | 地表水耗水量 | 地下水可开采量 | |
合计 | 14.59 | 6.57 | 5.02 | 4.35 |
西拉木伦河及老哈河 | 10.54 | 4.46 | 3.81 | 3.24 |
乌力吉木仁河 | 1.86 | 1.02 | 0.68 | 0.24 |
西辽河下游区间(苏家堡以下) | 0.62 | 0.17 | 0.30 | 0.25 |
沿渤海西部诸河 | 0.49 | 0.21 | 0.14 | 0.24 |
滦河山区 | 0.25 | 0.10 | 0.01 | 0.21 |
内蒙古高原东部 | 0.82 | 0.61 | 0.08 | 0.18 |
1 |
王建华,陆垂裕. 华北地区地下水超采综合治理技术支撑体系探析[J]. 中国水利,2020(13):19-21,25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
鹿海员,谢新民,郭克贞, 等.基于水资源优化配置的地下水可开采量研究[J]. 水利学报,2013,44(10):1 182-1 188.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
陈飞,丁跃元,李原园,等. 华北地区地下水超采治理实践与思考[J]. 南水北调与水利科技(中英文),2020,18(2):191-198.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李岩. 变化环境下中牟县地下水演变研究[D]. 郑州:华北水利水电大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘兆旋. 石家庄市平原区地下水位变化特征分析及预测研究[D]. 郑州:华北水利水电大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李锦秀,肖洪浪,任娟. 阿拉善地区水资源与生态环境变化及其对策研究[J]. 干旱区资源与环境,2010,24(11):56-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
赵海卿,张哲寰,陈艳丽. 松嫩平原地下水位下降与环境负效应[J]. 干旱区资源与环境,2010,24(1):126-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
母敏霞,王文科,杜东,等. 新疆奎屯河流域地下水资源开发引起的生态环境问题及对策[J]. 干旱区资源与环境,2007(12):15-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李爱军. 河西走廊地下水资源[J]. 干旱区资源与环境,2004(6):56-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
封丽,赵又霖. 华北地下水开采与粮食生产的脱钩效应及其空间差异性研究[J].中国农村水利水电,2021(1):132-138,146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
齐跃明,袁冬梅,马超,等. 淄河源区岩溶地下水可开采资源量评价[J]. 西南师范大学学报(自然科学版),2019,44(11):65-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
郑越馨,戴长雷,谢世尧,等. 强开放边界灌区地下水安全开采量内涵与安全保障模式研究[J].节水灌溉,2018(9):62-64,70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
中华人民共和国水利部. 水利部办公厅关于开展地下水管控指标确定工作的通知[EB/OL]. 2020-02-28
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
水利部水利水电规划设计总院. 全国水资源调查评价技术细则[R]. 北京:水利部水利水电规划设计总院,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
水利部水利水电规划设计总院, 中国水资源及其开发利用调查评价[M]. 北京.中国水利水电出版社,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
束龙仓,胡慧杰,苏桂林,等. 主观因素影响下河川基流量计算的不确定性分析:以增江中下游为例[J]. 南水北调与水利科技,2016,14(4):8-13,28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
陈彭, 苗晋杰, 王威, 等. 陡河流域地表水与地下水转化关系[J]. 南水北调与水利科技,2016,14(2):165-171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
焦玮. 锡林河流域河川基流对气候变化与人类活动的响应特征研究[D].呼和浩特:内蒙古农业大学,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
赵韦,李占玲,王月华. 黑河流域上游山区基流量分割及其变化[J].南水北调与水利科技,2016,14(5):26-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
陈秋潭,张永勇. 淮河中上游流域基流时空变化特征及闸坝调控影响[J].南水北调与水利科技,2019,17(6):10-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
刘予伟,金栋梁. 地下水资源可开采量评价方法概述[J]. 水利水电快报,2008,29():16-19,26.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
鲁荣安,宁维亮.山丘区区域地下水可开采量评价问题[J].地下水,2002(1):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
胡代华. 用补偿疏干法计算岩溶区地下水开采量[J].勘察技术,1979(6):70-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
路瑞利,方树星,王红雨.基于Modflow的某水源区地下水开采三维数值模拟[J].武汉大学学报(工学版),2011,44(5):618-623.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
李扬,王丽满,田浩毅,等. 淮河流域河南平原区河流与地下水的相互影响[J].华北水利水电大学学报(自然科学版),2017,38(1):36-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
胡立堂,王忠静,赵建世,等. 地表水和地下水相互作用及集成模型研究[J].水利学报,2007(1):54-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
徐远志,赵贵章,母霓莎,等. 包气带水分运移过程的影响因素综述[J].华北水利水电大学学报(自然科学版),2019,40(2): 37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
张楠. 赤峰市水资源可持续利用研究[D].内蒙古通辽:内蒙古民族大学,2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
王岩,任树春,李亚光,等. 赤峰市水资源现状与可持续利用措施研究[J].内蒙古水利,2015(6):84-85.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
唐世南,丁跃元,于丽丽,等. 内蒙古西辽河流域量水而行以水定需治理思路[J]水利规划与设计,2019(11):28-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |