
基于正交试验的低比转数混流泵叶轮和导叶匹配优化
曹磊, 李彦军, 吴天澄
基于正交试验的低比转数混流泵叶轮和导叶匹配优化
Matching Optimization of the Impeller and Guide Vane of Mixed Flow Pumps with A Low Specific Speed Based on Orthogonal Experiments
为提高比转数为300的导叶式混流泵在设计工况下的水力效率,以叶轮进、出口安放角、包角、直径以及导叶进、出口安放角和包角作为设计参数,采用标准正交表中7因素3水平正交试验方案进行方案设计,使用商业软件CFX对18组混流泵设计方案进行三维数值模拟,首先利用极差分析法得到各因素对扬程和效率的影响程度,然后按照设计要求选取最优方案,最后对比分析优化前后的内部流动情况,探究最优方案外特性参数提高的原因。结果表明:叶轮出口安放角对扬程和效率影响最大,导叶出口安放角对扬程和效率的影响最小。在设计流量下,最优方案扬程符合优化目标,效率有显著提高,整体流态得到改善,达到优化设计的目的。
In order to improve the hydraulic efficiency of the guide vane mixed flow pump with a specific speed of 300, the standard orthogonal table is used to design the orthogonal test scheme of seven factors and three values including inlet and outlet angle, wrap angle, diameter of impeller and inlet and outlet angle, wrap angle of guide vane. Three-dimensional numerical simulation of the 18 mixed-flow pump designs is carried out with commercial software CFX. Range analysis is used to analyze the influence of various factors on the head and efficiency. The best program is selected according to the design requirements. Finally, by comparing and analyzing the internal flow before and after optimization, the reasons for the increase in the external characteristic parameters of the optimal plan are analyzed and explored. The results show that the installation angle of the impeller outlet has the greatest influence on the head and efficiency, and the installation angle of the guide vane outlet has the least influence on the head and efficiency. Under the design flow rate, the head of the optimal plan meets the optimization goal, the efficiency is significantly improved, and the overall flow pattern is improved to achieve the purpose of optimization design.
混流泵 / 低比转数 / 正交试验 / 匹配优化 {{custom_keyword}} /
mixed-flow pump / low specific speed / orthogonal test / matching optimization {{custom_keyword}} /
表1 网格无关性分析Tab.1 Grid independence analysis |
序号 | 网格总数量/万个 | 扬程计算结果/m | 误差/% |
---|---|---|---|
1 | 120 | 29.07 | - |
2 | 173 | 28.50 | 2.4 |
3 | 255 | 28.33 | 2.0 |
4 | 327 | 28.25 | 0.6 |
5 | 385 | 28.17 | 0.3 |
表2 参数取值Tab.2 Table of the variables of parameters |
编号 | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
β 1/(°) | β 2/(°) | φ 1/(°) | D 2/mm | α 1/(°) | α 2/(°) | φ 2/(°) | |
1 | 20 | 25 | 110 | 350 | 30 | 80 | 100 |
2 | 25 | 30 | 115 | 354 | 35 | 85 | 105 |
3 | 30 | 35 | 120 | 358 | 40 | 90 | 110 |
表3 试验方案Tab.3 Test scheme |
试验序号 | A(β 1) | B(β 2) | C(φ 1) | D(D 2) | E(α 3) | F(α 4) | G(φ 2) |
---|---|---|---|---|---|---|---|
1 | 20 | 25 | 110 | 350 | 30 | 80 | 100 |
2 | 20 | 30 | 115 | 354 | 35 | 85 | 105 |
3 | 20 | 35 | 120 | 358 | 40 | 90 | 110 |
4 | 25 | 25 | 110 | 358 | 35 | 85 | 110 |
5 | 25 | 30 | 115 | 350 | 40 | 90 | 100 |
6 | 25 | 35 | 120 | 354 | 30 | 80 | 105 |
7 | 30 | 25 | 115 | 358 | 30 | 90 | 105 |
8 | 30 | 30 | 120 | 350 | 35 | 80 | 110 |
9 | 30 | 35 | 110 | 354 | 40 | 85 | 100 |
10 | 20 | 25 | 120 | 350 | 40 | 85 | 105 |
11 | 20 | 30 | 110 | 354 | 30 | 90 | 110 |
12 | 20 | 35 | 115 | 358 | 35 | 80 | 100 |
13 | 25 | 25 | 115 | 354 | 40 | 80 | 110 |
14 | 25 | 30 | 120 | 358 | 30 | 85 | 100 |
15 | 25 | 35 | 110 | 350 | 35 | 90 | 105 |
16 | 30 | 25 | 120 | 354 | 35 | 90 | 100 |
17 | 30 | 30 | 110 | 358 | 40 | 80 | 105 |
18 | 30 | 35 | 115 | 350 | 30 | 85 | 110 |
表4 数值模拟结果Tab.4 Summary of test results |
试验序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
H/m | 24.38 | 25.04 | 25.26 | 25.60 | 24.47 | 25.54 | 24.60 | 23.76 | 25.60 |
η/% | 86.21 | 83.51 | 80.21 | 86.33 | 85.50 | 84.29 | 86.23 | 86.19 | 83.37 |
试验序号 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
H/m | 23.35 | 25.77 | 25.59 | 24.20 | 25.37 | 25.84 | 23.10 | 25.73 | 25.13 |
η/% | 85.65 | 84.45 | 79.66 | 86.50 | 84.62 | 84.82 | 86.26 | 84.03 | 85.48 |
1 |
潘中永,倪永燕,袁寿其,等 .斜流泵研究进展[J].流体机械,2009,37(9):37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
关醒凡. 现代泵理论与设计[M]. 北京:中国宇航出版社,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
翟杰,祝宝山,李凯,等. 低比转数混流泵导叶内部压力脉动特性研究[J]. 农业机械学报,2016,47(6):42-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王春林,叶剑,曾成,等. 基于NSGA-II遗传算法高比转速混流泵多目标优化设计[J].农业工程学报,2015,31(18):100-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
邴浩,曹树良,谭磊,等. 混流泵导叶对其性能的影响[J]. 排灌机械工程学报,2012,30(2):125-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
HEO M W,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王梦成,李彦军,袁建平,等.叶轮出口环量非线性分布条件下混流泵性能研究[J/OL].农业机械学报:1-11[2020-11-06].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
裴迎举. 斜流泵叶轮与空间导叶的协同优化设计研究[D]. 成都:西华大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
刘琦. 叶轮导叶匹配关系对混流泵压力脉动及结构特性的影响[D]. 江苏镇江:江苏大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张学光. 多级离心泵叶轮和导叶匹配关系的研究[D]. 兰州:兰州理工大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
徐仲安,王天保,李常英,等. 正交试验设计法简介[J]. 科技情报开发与经济,2002,12(5):148-150.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
王玉勤,丁泽文,霍新旺,等. 基于正交试验的离心泵空化性能优化设计[J]. 邵阳学院学报(自然科学版),2018,15(3):26-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
郑源,孙奥冉. 轴流泵多目标优化正交试验[J].农业机械学报,2017,48(9):129-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
张金凤,黄茜,袁寿其,等. 基于PIV的低比转数离心泵网格无关性[J].排灌机械工程学报,2016,34(7):567-572,583.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王伟,施卫东,蒋小平,等. 基于正交试验及CFD的多级离心泵叶轮优化设计[J]. 排灌机械工程学报,2016,34(3):191-197.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |