
抽水蓄能电站地下洞室开挖设备选型及TBM技术研究
王洪玉, 刘金祥, 荆岫岩, 贾连辉, 潘福营, 于庆增
抽水蓄能电站地下洞室开挖设备选型及TBM技术研究
Selection of Excavation Equipment and TBM Technology for Underground Cavern of Pumped Storage Power Stations
抽水蓄能电站地下洞室开挖装备和技术的发展直接关系到电站运营的安全和投产效率。其开挖机械设备也经历了风动钻机、多臂台车等阶段,传统机械设备无法满足重大工程对施工效率、社会效益、安全性等方面的要求。基于此,在对抽水蓄能电站地质和施工条件研究的基础上,提出抽水蓄能电站用TBM开发关键技术,针对交通洞&通风安全洞、排水廊道、引水斜井等工程,从TBM 设备选型、小半径转弯技术、大坡度斜井安全措施、大坡度出渣技术等方面开展了针对性设计技术研究。通过山东文登抽水蓄能电站新型TBM工法的成功应用,新型TBM工法可以提高地下洞室开挖的效率和安全性,具备推广应用前景。
The development of equipment and technology for the excavation of underground caverns of pumped-storage power stations is directly related to the safety of power station operations and the efficiency of production. Its excavation machinery and equipment have also gone through stages such as pneumatic drilling rigs and dobby trolleys. Traditional machinery and equipment cannot meet the requirements of major projects for construction efficiency, social benefits, and safety. Based on the research on the geology and construction conditions of the pumped storage power station, the key technology for the development of TBM for the pumped storage power station is proposed. For traffic tunnels and ventilation safety tunnels, drainage corridors, diversion inclined shafts and other projects, from TBM equipment design technology research has been carried out in the aspects of model selection, small radius turning technology, high-slope inclined shaft safety measures, and large-slope slagging technology. Through the successful application of the new TBM construction method of Shandong Wendeng Pumped Storage Power Station, the new TBM construction method can improve the efficiency and safety of underground cavern excavation, and has the prospect of popularization and application.
抽水蓄能电站 / 全断面岩石隧道掘进机 / 小半径转弯 / 斜井TBM {{custom_keyword}} /
pumped storage power station / TBM / small radius turn / inclined shaft TBM {{custom_keyword}} /
表1 各类机械设备适应的工程地质条件Tab.1 Engineering geological conditions of various mechanical equipment |
机械设备 | TBM | 悬臂掘进机 | 多臂台车 | 反井钻机 |
---|---|---|---|---|
围岩类别 | 可适应较完整至破碎的岩体,用于Ⅱ、Ⅲ、Ⅳ、Ⅴ级围岩,在破碎、断层、塌陷、涌水段通过困难。 | 可适应较完整至破碎的岩体,用于Ⅲ、Ⅳ、Ⅴ级围岩 | Ⅱ、Ⅲ级围岩全断面或台阶法开挖;Ⅳ、Ⅴ、Ⅳ级不稳定围岩需采用预加固措施。 | 通过配备合适的施工机具、合理选择各种参数、可以适用Ⅱ、Ⅲ、Ⅳ、Ⅴ级围岩 |
岩石强度 | 5~250 MPa | <80 MPa | 无特殊要求 | 10~150 MPa |
埋深 | 无特殊要求 | 无特殊要求 | 无特殊要求 | 无特殊要求 |
洞径 | 定制设备,根据洞径尺寸定制 | 通用设备,无限制,灵活性强。 | 通用设备,无限制,灵活性强。 | 直径5 m以上较困难 |
隧洞长度 | 100~25 000 m | 无限制 | 无限制 | ≤400 m |
坡度 | 常规±5%,大于5%需针对性设计斜井TBM | ±29% | ±20% | 斜井定制设备>100% |
转弯半径 | 常规500 m,小转弯需针对设计,最小10倍洞径 | 通用设备,无限制 | 通用设备,无限制 | 无 |
1 |
吕永航.抽水蓄能电站TBM开挖解决方案研究[J].建设监理,2020(3):80-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
C 斯托克斯,刘建龙.智利等国部分地下工程建设的最新进展[J].水利水电快报,2014,35(12):11-12,16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
何川.盾构/TBM施工煤矿长距离斜井的技术挑战与展望[J].隧道建设,2014,34(4):287-297.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
叶仿拥,马永辉,徐晋勇,等 .掘进装备在我国煤矿中的发展及趋势[J].煤炭科学技术,2009,37(4):61-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘泉声,黄兴,时凯,等 .煤矿超千米深部全断面岩石巷道掘进机的提出及关键岩石力学问题[J].煤炭学报,2012,37(12): 2 007-2 013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李建斌.TBM构造与应用[M].北京:人民交通出版社,2019:29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
黄丹,杨小聪,陈何 .TBM 在地下金属矿山应用中的发展现状与趋势[J].有色金属工程,2019,9(11):108-121.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
徐艳群,尚海龙,刘传军.斜井隧道掘进机在抽水蓄能电站施工中的应用[J].水电与抽水蓄能,2019,5(5):98-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
张军,李守巨,宁忠立,等.抽水蓄能电站引水斜井开挖采用TBM施工的研究[J].水电与抽水蓄能,2018,4(2):1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘传军. 应用硬岩掘进机抽蓄电站施工更安全更高效[N]. 国家电网报,2020-05-19(008).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |