
超长大容量引水发电系统水力过渡过程试验及仿真分析
曹春建, 方杰, 陈顺义, 黄靖乾
超长大容量引水发电系统水力过渡过程试验及仿真分析
Research on the Test and Simulation Analysis of Hydraulic Transient Process in Super-long and Large Water Diversion and Power Generation Systems
为探究典型水力过渡过程工况下超长大容量引水发电系统的动态响应特性,以锦屏二级水电站(8×600 MW)为例,基于HYSIM软件提供的用户自定义建模功能,建立了差动式调压室、混流式水轮机、筒形阀等系统主要元素的HYSIM仿真模块,并根据系统内部机理及其运行特性,最终搭建出完整的超长大容量引水发电系统水力过渡过程仿真模型。在此基础上,提出系统主要元素的参数率定及修正方法,并针对机组双机同甩负荷及筒形阀动水关闭等两种典型试验工况进行了仿真计算,同时将计算结果与实测结果进行对比分析。结果表明,所建立的仿真模型能准确描述超长大容量引水发电系统的动态响应特性,从而为复核超长大容量引水发电系统极端控制性工况以及探讨长期稳定运行机理提供了可靠的仿真平台。
In order to analyze the dynamic response characteristic of typical hydraulic transient process conditions in super-long and large water diversion and power generation system, this paper takes JPII Hydropower Station (8 × 600 MW) as an example. The HYSIM simulation models of main elements in the system are established by the user-defined modeling function of HYSIM software,such as differential surge tank, Francis turbine, ring gate and so on. Based on the internal mechanism and operating characteristics of the system, the complete simulation model of the super-long and large water diversion and power generation system has been completed finally. Besides, the method of parameter calibration and correction for the main elements of the system is proposed. By the simulation model, two typical hydraulic transient process test conditions are simulated, here the involved test conditions are as follows: double load rejection and shun-down process of ring valve. At the same time, the calculated results are compared with the test results. The results show that the proposed simulation model can describe the dynamic response characteristic of the super-long and large water diversion and power generation system accurately and it can provide a reliable simulation platform for checking the extreme control conditions and studying long-term stable operation mechanism of the system.
引水发电系统 / 建模 / 仿真 / 动态特性 / HYSIM {{custom_keyword}} /
water diversion and power generation system / modeling / simulation / dynamic performance / HYSIM {{custom_keyword}} /
表1 双机同甩负荷试验工况表Tab.1 The double load rejection test conditions |
计算工况 | 上库水位/m | 下库水位/m | 工况说明 |
---|---|---|---|
S1 | 1 644.40 | 1 328.01 | 7号、8号机组均带100%额定负荷(600 MW),两台机组同甩负荷,调速器按整定规律关闭导叶 |
表2 双机同甩负荷试验及计算结果表Tab.2 The calculated values and test values of the double load rejection test |
机组号 | 机组最高相对 转速/% | 蜗壳进口最大 压力/m | 尾水管进口最 小压力/m | 调压室最高涌 浪水位/m | 调压室最低涌 浪水位/m | |||||
---|---|---|---|---|---|---|---|---|---|---|
实测值 | 计算值 | 实测值 | 计算值 | 实测值 | 计算值 | 实测值 | 计算值 | 实测值 | 计算值 | |
7号机 | 39.6 | 38.9 | 367.94 | 366.38 | 0.78 | -1.65 | 1 684.30 | 1 681.31 | 1 605.56 | 1 604.46 |
8号机 | 39.1 | 38.9 | 367.50 | 366.33 | 1.48 | -1.79 |
图5 7号机组蜗壳进口压力变化对比曲线Fig.5 The comparative curves of 7# unit spiral case inlet pressure |
图6 7号机组尾水管压力进口变化对比曲线Fig.6 The comparative curves of 7# unit draft tube inlet pressure |
表3 筒形阀动水关闭试验工况表Tab.3 The shun-down process test conditions of the cylinder valve |
计算工况 | 上库水位/m | 下库水位/m | 工况描述 |
---|---|---|---|
TF1 | 1 644.0 | 1 328.65 | 5号机组带75%额定负荷(450 MW),筒形阀按整定规律动水关闭 |
TF2 | 1 643.7 | 1 328.65 | 5号机组带100%额定负荷(600 MW),筒形阀按整定规律动水关闭 |
表4 筒形阀动水关闭试验及计算结果表 (m)Tab.4 The calculated values and test values of the shun-down process test conditions for cylinder valve |
工况编号 | 蜗壳进口最大压力/m | 调压室最高涌浪水位/m | 调压室最低涌浪水位/m | |||
---|---|---|---|---|---|---|
实测值 | 计算值 | 实测值 | 计算值 | 实测值 | 计算值 | |
TF1 | 346.06 | 342.16 | 1 664.93 | 1 661.70 | 1 620.73 | 1 619.89 |
TF2 | 354.22 | 351.44 | 1 673.18 | 1 670.46 | 1 615.28 | 1 614.16 |
图9 TF1工况下机组流量变化对比曲线Fig.9 The comparative curves of unit flow rate under TF1 test condition |
图10 TF2工况下机组流量变化对比曲线Fig.10 The comparative curves of unit flow rate under TF2 test condition |
图11 TF1工况下蜗壳进口压力变化对比曲线Fig.11 The comparative curves of unit spiral case inlet pressure under TF1 test condition |
图12 TF2工况下蜗壳进口压力变化对比曲线Fig.12 The comparative curves of unit spiral case inlet pressure under TF2 test condition |
图13 TF1工况下差动式调压室水位变化对比曲线Fig.13 The comparative curves of the water level for differential surge tank under TF1 test condition |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
樊红刚.复杂水力机械装置系统瞬变流计算研究[D].北京:清华大学,2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
李永兴,肖志怀,陈启卷.超长引水隧洞上下游双调压室电站水力过渡过程计算研究[J].中国农村水利水电,2017(10):131-135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
杨飞,舒静,崔伟杰,等.单机1 000 MW级水电站洞机组合水力过渡过程研究[J].中国农村水利水电,2017(5):184-187.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
吴世勇,王鸽.锦屏二级水电站深埋长隧洞群的建设和工程中的挑战性问题[J].岩石力学与工程学报,2010,29(11):2 161-2 171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
陈祥荣,范灵,鞠小明.锦屏二级水电站引水系统水力学问题研究与设计优化[J].大坝与安全,2007(3):1-7,15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
孔庆蓉,张永良,江春波.锦屏二级水电站长引水隧洞水力特性研究[J].水力发电,2009,35(3):32-34,37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
吴世勇,周济芳,申满斌.锦屏二级水电站复杂超长引水发电系统水力过渡过程复核计算研究[J].水力发电学报,2015,34(1):107-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
付亮,杨建东,王建伟.超长引水隧洞水电站大波动过渡过程特殊问题[J].中国农村水利水电,2006(9):112-114,117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
曹春建,方杰,黄靖乾,等.水电站水机电系统仿真建模及动态特性分析[J].长江科学院院报,2018,35(8):132-138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
刘钢钢,程远楚,王杰飞.基于MATLAB的水力机组过渡过程计算软件开发与应用[J].中国农村水利水电,2014(5):150-154.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李高会,汪德楼,刘子乔.水力过渡过程仿真软件开发及其在抽水蓄能电站中的应用[C]// 中国水力发电工程学会2017年抽水蓄能学术交流会论文集,2017:378-383.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |