
基于VMD-SWT的降噪方法在转子振动信号中的应用
孟湘, 曾洪涛, 刘冬, 肖志怀, 黄宗磊
基于VMD-SWT的降噪方法在转子振动信号中的应用
A Denoising Method Based on Variational Mode Decomposition and Soft Wavelet-thresholding and its Application to Vibration Signals
为提高水电机组转子故障振动信号降噪后的信噪比,获得更好的降噪效果,提出一种基于样本熵的变分模态分解和小波软阈值相结合的降噪方法,通过对转子试验台所产生的正常、转子不对中、不平衡和碰磨4种工况下的转子垂直振动信号进行变分模态分解、计算内禀模态函数的样本熵、用小波软阈值对样本熵较高的分量信号进行降噪处理、信噪比分析,发现与经验模态分解的结果相比较,基于变分模态分解和小波软阈值降噪后信号普遍具有较高的信噪比,由此证实该方法确实具有更好的降噪效果。
Noise is a great disturbance in the analysis of vibration signals, which is an important part in fault diagnosis. In this paper, a denoising method based on Variational Mode Decomposition and soft Wavelet-thresholding is proposed. The new method works better than the EMD one in that it solves the EMD’s inherent defects like modal aliasing, endpoint effect and weak robotness to noises. A rotor test bed is used to generate signals in four different working conditions: misaligned rotor, unbalanced rotor, healthy rotor and rotor contact-rubbing. These signals are first decomposed by VMD and then, the high frequencies are denoised by soft wavelet-thresholding and then reconstructed with the remains. Lastly, signal to noise analysis is conducted to the reconstructed signals. The results show that the signal to noise ratio of VMD method basically doubles the EMD one. Therefore, it is confirmed that this method has a better effect on denoising than the EMD one.
信号降噪 / 变分模态分解 / 小波阈值 / 信噪比 / 振动信号 {{custom_keyword}} /
signal denoising / variational mode decomposition / wavelet-thresholding / signal to noise ratio / vibration signals {{custom_keyword}} /
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
贾瑞生,赵同彬,孙红梅,等. 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报,2015,58(3):1 013-1 023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
岳应娟,孙钢,蔡艳平,等. 变分模态分解在轴承故障诊断中的应用[J]. 轴承,2016(8):50-54,65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
武英杰,甄成刚,刘长良. 变分模态分解在风电机组故障诊断中的应用[J]. 机械传动,2015,39(10):129-132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王冬梅,路敬祎. 非平稳信号的去噪技术研究[J]. 内燃机与配件,2017(6):133-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
赵磊,朱永利,高艳丰,等. 基于变分模态分解和小波分析的变压器局部放电去噪研究[J]. 电测与仪表,2016,53(11):13-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李加福,唐文彦,张晓琳,等. 壳段厚度激光检测信号的变分模态分解去噪[J]. 光学精密工程,2017,25(8):2 173-2 181.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
杜必强,孙立江. 变分模态分解和熵理论在超声信号降噪中的应用[J]. 中国工程机械学报,2017,15(4):310-317.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王晶. 基于VMD分解和小波阈值的语音信号去噪[J]. 软件导刊,2017,16(10):12-14,18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
张杏莉,卢新明,贾瑞生,等. 基于变分模态分解及能量熵的微震信号降噪方法[J]. 煤炭学报,2018,43(2):356-363.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
崔公哲,张朝霞,杨玲珍,等. 一种改进的小波阈值去噪算法[J]. 现代电子技术,2019,42(19):50-53,58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
杨洪涛.样本熵改进小波包阈值去噪的轴承故障诊断[J].组合机床与自动化加工技术,2020(1):79-82,8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
唐贵基,王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报,2016,29(4):638-648.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
刘尚坤. 基于振动信号处理的旋转机械故障诊断方法研究[D]. 北京:华北电力大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
邵忍平,曹精明,李永龙. 基于EMD小波阈值去噪和时频分析的齿轮故障模式识别与诊断[J]. 振动与冲击,2012,31(8):96-101,106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
张长伟,徐成劢,王卫玉,等. 水电机组振动信号的自适应VMD分析[J]. 中国农村水利水电,2019(6):159-162.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
李成武,解北京,杨威,等. 基于HHT法的煤冲击破坏SHPB测试信号去噪[J]. 煤炭学报,2012,37(11):1 796-1 802.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |