
沿程不连续束缩式内消能工在高流速无压隧洞中的应用
武英豪, 王均星
沿程不连续束缩式内消能工在高流速无压隧洞中的应用
Application of Discontinuous Shrinkage-Beam Internal Energy Dissipation in High Velocity and Pressure-free Tunnels
高速水流消能是高水头水利水电枢纽中最重要的水工水力学问题,目前工程上还未出现将沿程不连续束缩式内消能工应用在高流速无压隧洞中的先例。采用束窄过流断面的方法,利用Flow-3D软件对某水电站溢洪道进行数值模拟,验证高流速溢洪道无压隧洞内沿程布置内消能工可行性。初期采用结构简单的三角墩体型,以分析不同束窄度及倾角的消能墩的消能效果。针对三角墩体型的缺陷,提出驼峰型消能墩解决方案。最终确定隧洞段沿程布置束窄度为10%的对称驼峰墩组,并建立比尺为1∶80的溢洪道物理模型,对Flow-3D软件计算结果进行验证。实验结果表明,无压隧洞沿程布置驼峰墩组消能效果理想,但驼峰型消能墩仍存在过墩水翅及峰顶存在较大负压的问题,需要进一步进行体型优化。贴合水流流线优化后的驼峰型消能墩的空蚀空化及水翅问题可得到有效改善。
High-speed water flow energy dissipation is the most important hydraulic problem in high head water conservancy and hydropower projects. At present, applying discontinuous beam shrinkage internal energy dissipation in high flow velocity and pressure-free tunnel has not occurred before. A numerical simulation of spillway of a hydropower station is carried out by using flow-3D software, and the feasibility of internal energy dissipation in the arrangement of pressure-free tunnel of high-velocity spillway is verified. In the initial stage, triangular piers with simple structure are used to analyze the energy dissipation effects of energy dissipation piers with different beam narrowness and slope ratio. Aiming at the defect of triangular pier,this paper puts forward the solution of hump type energy dissipating pier. The symmetrical hump piers with 10% beam narrowness along the tunnel section are finally determined, and the spillway physical model with a scale of 1∶80 is established to verify the calculation accuracy of flow-3D software. The experimental results show that the hump piers are arranged along the tunnel with ideal energy dissipation effect, but the hump type piers still have the problem of water wing over the pier and large negative pressure at the peak, and further body optimization is needed. Cavitation erosion and water wing problems of hump piers with optimized flow lines are improved effectively.
无压隧洞 / 高速水流 / 内消能工 / 三角墩 / 驼峰墩 / Flow-3D {{custom_keyword}} /
free flow tunnel / high-velocity flow / internal energy dissipater / triangle pier / hump pier / flow-3D {{custom_keyword}} /
表1 三角墩体型参数表Tab.1 Table of triangular piers shape parameters |
方案序号 | 体型参数 | 断面束窄度/% |
---|---|---|
① | L=2.5 m,B=0.5 m, 坡比1∶5 | 6.67 |
② | L=2.5 m,B=1 m, 坡比2∶5 | 13.3 |
③ | L=7.5 m,B=1.5 m, 坡比1∶5 | 20 |
④ | L=3.75 m,B=1.5 m,坡比2∶5 | 20 |
表2 三角墩方案消能效果对比Tab.2 Comparison of energy dissipation effect of triangle pier schemes |
方案序号 | 隧洞出口最大流速/(m·s-1) | 消杀水头/m |
---|---|---|
① | 26.9 | 1.1 |
② | 26.8 | 1.3 |
③ | 26.4 | 2.4 |
④ | 25.7 | 4.1 |
表3 物理模型实验流速数据表Tab.3 Flow velocity data sheet for physical model experiments |
测量断面 | 最大流速/(m·s-1) | 平均流速/(m·s-1) |
---|---|---|
隧洞段进口 | 21.97 | 21.04 |
1号驼峰墩 | 22.99 | 21.85 |
2号驼峰墩 | 23.43 | 20.72 |
3号驼峰墩 | 23.88 | 22.48 |
4号驼峰墩 | 24.06 | 22.36 |
5号驼峰墩 | 25.61 | 22.69 |
6号驼峰墩 | 27.61 | 22.87 |
7号驼峰墩 | 25.85 | 22.34 |
8号驼峰墩 | 26.24 | 21.53 |
隧洞段出口 | 23.73 | 21.97 |
表4 各驼峰墩组最大压力表Tab.4 Maximum pressure gauge for each hump piers |
驼峰墩编号 | 最大正压/m | 最大负压/m |
---|---|---|
1号 | 13.44 | -10.36 |
2号 | 13.60 | -7.52 |
3号 | 13.88 | -10.08 |
4号 | 14.224 | -5.424 |
5号 | 15.84 | -4.88 |
6号 | 13.28 | -3.52 |
7号 | 13.84 | -8.24 |
8号 | 14.88 | -5.20 |
表5 各驼峰墩组最不利空化数Tab.5 The most unfavorable cavitation number of each hump pier group |
驼峰墩编号 | 最大负压 h 0/m | 平均流速 v 0/(m·s-1) | 空化数σ |
---|---|---|---|
1号 | -10.360 | 21.85 | 0.006 |
2号 | -7.520 | 20.72 | 0.123 |
3号 | -10.080 | 22.48 | 0.005 |
4号 | -5.424 | 22.36 | 0.188 |
5号 | -4.880 | 22.69 | 0.204 |
6号 | -3.520 | 22.87 | 0.251 |
7号 | -8.240 | 22.34 | 0.078 |
8号 | -5.200 | 21.53 | 0.212 |
表6 隧洞段进口和出口的水力学数据表Tab.6 Hydraulics data sheet for inlet and outlet of tunnel section |
计算断面 | 高程/m | 水深/m | 流速/(m·s-1) |
---|---|---|---|
进口 | 2 855.34 | 9.28 | 21.04 |
出口 | 2 834.03 | 9.28 | 21.97 |
1 |
罗毅. 变水位条件下某无压水工隧洞的空化空蚀研究[J]. 中国农村水利水电,2019(4):110-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
郑林平. 国内泄洪隧洞洞内消能工的研究及应用进展[C]//中国水力发电工程学会水工专委会2004年学术交流会议论文集.北京,2004:131-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
郑林平,李岳军. 水工隧洞内消能工的研究及应用进展[J]. 水力发电,2016,32(9):81-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
艾万政. 孔板(洞塞)消能研究综述[J]. 中国农村水利水电,2009(6):129-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
罗毅. 变水头无压输水隧洞水流特性及洞内消能研究[D]. 辽宁大连:大连理工大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王月华,包中进,王斌. 基于Flow-3D软件的消能池三维水流数值模拟[J]. 武汉大学学报(工学版),2012,45(4):454-457.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
牛坤. 莲花台水电站消能防冲试验研究与数值模拟[D]. 陕西杨陵:西北农林科技大学,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
中华人民共和国水利部. 溢洪道设计规范:SL253-2018 [S]. 北京:中国水利水电出版社,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |