
径流式电站通航水流条件优化措施研究
段宛玥, 董俊君, 陈立华
径流式电站通航水流条件优化措施研究
Optimization of Navigation Flow Condition of Run-off Hydropower Station
在河流上修建水利枢纽,需要考虑其防洪、发电、通航、灌溉等多方面的综合效益。针对通航方面分析,船闸是布置在枢纽上的通航建筑物,由引航道与天然河道连接。由于引航道口门区及连接段受边界突变影响,水流条件复杂,常难以满足通航要求。根据某水电站工程布置、河道特性以及通航要求,在原设计方案的基础上,设计四种疏挖方案,在枢纽下泄流量为350、1 570.4、6 200、12 000 m3/s 4种条件下,运用数学模型对船闸口门区水流条件展开论证,得出疏挖方案四能够满足引航道下游口门区连接段水流条件及Ⅲ级航道通航要求的结论,研究成果可为径流式水电站通航条件优化设计及通航论证提供依据,对类似工程具有指导意见。
To build a water conservancy project on a river, it is necessary to consider its comprehensive benefits in flood control, power generation, navigation, irrigation and so on.According to the analysis of navigation, the shiplock is a navigable building arranged on the hub, and the flow situation of the diversion channel should meet the navigation conditions. Among them, the gate area is the connecting section of the channel and the natural waterway, which is affected by the boundary mutation and so on, and the flow condition is complicated, which often does not meet the navigation requirements.In this paper, according to the project layout, river characteristics and navigation requirements of the run-off hydropower station, four dredging schemes are designed on the basis of the original design scheme, Under the conditions of discharge of 350, 1 570.4, 6 200 and 12 000 m3/s, the flow conditions of the lock entrance area are demonstrated by the mathematical model, and the conclusion that the fourth dredging scheme can meet the flow conditions of the downstream entrance area of the approach channel and the navigation requirements of class Ⅲ waterway is obtained. The research results in this paper can provide the optimal design and navigation demonstration of navigation conditions of run-off hydropower stations, and provide reference for similar projects.
径流式电站 / 通航水流条件 / 疏挖 {{custom_keyword}} /
run-off hydropower station / navigable water flow condition / dredge {{custom_keyword}} /
表1 断面计算水位与实测水位对比表Tab.2 Comparison table of calculated water level and measured water level of cross section |
流量/ (m3·s-1) | 位置 | 实测值/ m | 计算值/ m | 差值/ m |
---|---|---|---|---|
1 570.4 | CS1 | 66.78 | 66.80 | 0.02 |
CS2 | 66.71 | 66.72 | 0.01 | |
CS3 | 66.03 | 66.01 | -0.02 | |
6 200.0 | CS1 | 69.02 | 69.04 | 0.02 |
CS2 | 68.86 | 68.84 | -0.02 | |
CS3 | 68.27 | 68.25 | -0.02 | |
12 000.0 | CS1 | 70.64 | 70.59 | -0.02 |
CS2 | 70.43 | 70.44 | -0.02 | |
CS3 | 69.60 | 69.62 | -0.02 |
表2 各流量级各方案下流速对比 (m/s)Fig.3 Comparison of flow velocities in different flow stages and schemes |
方案 | 流量/(m3·s-1) | 350.0 | 1 570.4 | 6 200.0 | 12 000.0 |
---|---|---|---|---|---|
原方案 | 最大纵向流速 | 0.17 | 1.03 | 2.11 | 3.16 |
最大横向流速 | 1.06 | 0.99 | 0.47 | 1.03 | |
最大回流流速 | 0.93 | 0 | 0 | 0 | |
方案一 | 最大纵向流速 | 0.15 | 1.06 | 1.90 | 2.56 |
最大横向流速 | 0.17 | 0.27 | 0.47 | 0.17 | |
最大回流流速 | 0 | 0 | 0 | 0 | |
方案二 | 最大纵向流速 | 0.09 | 1.02 | 1.70 | 2.34 |
最大横向流速 | 0.12 | 0.59 | 0.43 | 0.41 | |
最大回流流速 | 0.02 | 0.00 | 0.00 | 0.00 | |
方案三 | 最大纵向流速 | 0.07 | 0.55 | 1.26 | 1.88 |
最大横向流速 | 0.02 | 0.15 | 0.24 | 0.08 | |
最大回流流速 | 0 | 0 | 0 | 0 | |
方案四 | 最大纵向流速 | 0.07 | 0.46 | 1.25 | 1.46 |
最大横向流速 | 0.05 | 0.13 | 0.10 | 0.14 | |
最大回流流速 | 0 | 0 | 0 | 0 |
1 |
扈晓雯,汤暘,黄德繁. 水口坝下水位治理工程建设必要性分析论证[J]. 大坝与安全, 2011(5):1-2.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
周华兴,郑宝友. 再论《船闸引航道口门区水流条件限值的探讨》[J]. 水运工程, 2005(8):49-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
杨宇,李艳富,韩昌海,等.贵州清水江城景水电站通航水流条件优化实验研究[J].水运工程,2016(12):126-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
余凯,马骏,王志鹏.赣江井冈山航电枢纽船闸下游口门区及连接段通航水流条件试验研究[J]. 水运工程, 2020(11):122-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
周勤,谢灵运,马倩,等.古顶水利枢纽二线船闸下引航道布置物理模型试验研究[J].水运工程,2019(6):105-110,166.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李晓星,王艳华,黎国森.从江枢纽下游口门区通航水流条件改善措施研究[J]. 中国水运(下半月), 2018,18(2):139-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
赵家强,于广年.韩江东溪船闸通航水流条件优化试验研究[J]. 水运工程, 2019(10):134-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陆峰,朱卫国,张绪进,等.西津二线船闸下游引航道口门区西竹坑支流汇入口布置试验研究[J].水道港口,2019,40(4):426-430.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王建平,杨聿,张金明,等.大藤峡水利枢纽船闸下游引航道口门区方案优化研究[J].人民珠江,2016,37(4):59-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘晓平,徐大彬,李祥,林宇健.大源渡下游口门区通航水流条件改善措施试验[J].长沙理工大学学报(自然科学版),2016,13(1):56-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
M A K, W A N, E J G, et al. The use of the prospective NIMH Life Chart Method as a bipolar mood assessment method in research: A systematic review of different methods, outcome measures and interpretations[J]. Journal of Affective Disorders, 2015,175.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
陈辉,刘志雄,江耀祖. 引航道通航水流条件数值模拟[J]. 水利水运工程学报, 2012(4):13-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
GB 50139-2014,内河标准通航 [S].北京:中国计划出版社,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
JTJ 305-2001,船闸总体设计规范[S]海口:南海出版社,2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |