
水电站地下厂房通风系统智能化改造方案研究
陈日伟, 李超顺, 侯福年, 李永刚, 陈学志
水电站地下厂房通风系统智能化改造方案研究
Research on the Intelligent Transformation Scheme of the Ventilation System in Underground Power-house of Hydropower Stations
针对水电站地下厂房常年潮湿闷热,通风方式传统单一,通风效果较差等问题,以我国西南地区某水电站地下厂房通风系统的工程设计为例,通过在线监测、现地控制等技术手段,对水电站地下厂房通风系统智能化改造进行了探索。对监测系统的结构与功能、离线试验等做了详细的说明,提出水电站地下厂房通风系统的智能化改造方案。该系统具有造价低、功能完善,自动化和智能化程度高等特点,可以满足水电站生产运行要求,有利于实现水电站“远程集控、少人维护”的生产管理模式。
In view of the problems of underground power-house of hydropower station, such as perennial humid and hot, with the characteristics of traditional and single, lead to poor ventilation. This paper takes the engineering design of the ventilation system of a hydropower station in southwest China as an example and explores the intelligent transformation of the ventilation system of an underground powerhouse of hydropower station through online monitoring and on-site control and other technical means. the structure and function of the monitoring system and the off-line test are introduced in detail, and the intelligent renovation scheme of the ventilation system in the underground powerhouse of a certain hydropower station in the southwest of China is put forward. With the characteristics of low cost, perfect function, a high degree of automation and intelligence, this system meets the production and operation requirements of hydropower stations and is conducive to the realization of the production and management mode of “remote centralized control, few people maintenance” of hydropower stations.
水电站地下厂房 / 通风系统 / 在线监测系统 / 现地控制系统 / 湿热负荷 {{custom_keyword}} /
underground powerhouse of hydropower station / ventilating system / on-line monitoring system / in-situ control system / wet and heat load {{custom_keyword}} /
表1 机组额定工况下地下厂房内部监测结果Tab.1 Internal monitoring results of underground powerhouse under rated working conditions |
指标 | 层室 | ||||
---|---|---|---|---|---|
发电机层 | 母线层 | 励磁变层 | 水轮机层 | 蜗壳层 | |
温度/℃ | 16.9 | 18.6 | 19.2 | 18.7 | 18.8 |
湿度/% | 61.5 | 54.5 | 52.5 | 52.8 | 58.8 |
PM2.5/(µg·m-3) | 42.0 | 40.3 | 40.2 | 40.3 | 40.3 |
风速/(m·s-1) | 0.52 | 0.08 | 0.07 | 0.14 | 0.13 |
O2浓度/% | 20.6 | 20.6 | 20.5 | 20.6 | 20.5 |
1 |
杨述仁,周文铎. 地下水电站厂房设计[M].北京:水利电力出版社,1993.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
林婷莹. 地下式水电站通风空调系统设计方案优化研究[D].重庆:重庆大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
赵炜. 乌江流域人居环境建设研究[D].重庆:重庆大学,2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
薛小兵,宋晋红,蒋坤,等.大型抽水蓄能电站地下厂房环境测试方案[J].排灌机械工程学报,2016,34(12):1 051-1 057.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
Modeling of heat and mass transfer of tunnel ventilation in hydropower station[J]. Applied Thermal Engineering, 2015,90:45-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
林婷莹. 地下式水电站通风空调系统设计方案优化研究[D].重庆:重庆大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
卢少校. 谈现代大空间建筑暖通空调的设计与节能[J].资源节约与环保, 2016(9):112-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
何喆. 琅琊山水电站地下厂房发电机层通风模型试验与研究[D].重庆:重庆大学,2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
刘希臣. 地下水电站热湿环境形成机理及节能调控策略[D].重庆:重庆大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘希臣,肖益民,付祥钊. 地下风道空气析湿量数值计算方法[J].暖通空调,2012,42(8):89-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
郭俊勋,张学威,沈俊琬,等. 基于CFD方法的水电站地下厂房通风系统改造的研究[J].科技视界,2018(11):31-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
张立明. 基于二线制、三线制、四线制的变送器概述[J]. 电气工程应用,2016(4):16-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
陈杭州. 基于PLC和组态王的隧道通风监控系统[D].福建厦门:厦门大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
李瑞先.组态王软件在监控系统中的应用[J].电气传动自动化,2006(5):49-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |