
基于Budyko假设的汾河上游水源区径流衰减归因分析
蔺彬彬, 张亚琼, 郭维维
基于Budyko假设的汾河上游水源区径流衰减归因分析
An Analysis of Attribution of Runoff Attenuation in the Water Source Area of the Upper Fenhe River Based on Budyko Hypothesis
针对汾河上游水源区径流严重衰减的问题,分析了上游汾河水库控制流域1961-2016年降雨、潜在蒸散发、径流的变化趋势,并对年径流量进行了突变分析,将研究时段划分为基准期和变化期两个阶段。应用基于Budyko假设的流域水热耦合平衡Choudhury-Yang公式,计算了径流的气候弹性系数和下垫面弹性系数,对变化期的径流变化量进行了定量归因分析。研究表明:1961-2016年期间,汾河上游水源区径流量显著减少,变化期年均径流量相比基准期减少了35.5%;径流的降雨弹性系数、潜在蒸散发弹性系数及下垫面弹性系数分别为2.62、-1.62、-1.89;人类活动引起的下垫面变化是径流衰减的主要驱动因素,贡献率为57.8%,其次是气候变化,贡献率为42.2%,其中降雨的减少贡献了39.7%,潜在蒸散量的增加贡献了2.5%。汾河上游开展的大规模水土保持措施,在减少水土流失,改善植被的同时,也导致流域实际蒸散发增大,另外煤矿开采形成大量采空区导致地表变形塌陷,引起降雨入渗量增大也导致了径流的减少。
Over the past few decades, the runoff in the upper reaches of the Fenhe River has been severely attenuated. Against this phenomenon, the long-term trends of annual rainfall, potential evapotranspiration, and runoff from 1961 to 2016 are analyzed. According to the mutation analysis of the annual runoff, the study period is divided into two stages (base period and change period), the Choudhury-Yang formula based on Budyko’s hydro-thermal coupling balance theory is used to calculate the climatic elastic coefficient and the underlying surface elastic coefficient of the runoff in the basin. Attribution analysis of change in runoff is made. The results show that during 1961-2016, the runoff in the upstream water source area of the Fenhe River is significantly reduced, and the average annual runoff during the change-period is reduced by 35.5% compared with the base-period. The rainfall elasticity coefficient, potential evapotranspiration elasticity coefficient and underlying surface elasticity of runoff are 2.62, -1.62, -1.89; the underlying surface change caused by human activities is the main driving factor of runoff attenuation, with a contribution rate of 57.8%, followed by climate change, with a contribution rate of 42.2%: the decrease in rainfall contributed 39.7%, and the increase in average potential evapotranspiration contributed 2.5%. The large-scale soil and water conservation measures carried out in the upper reaches of the Fenhe River have not only reduced soil erosion and improved vegetation, but also increased actual evapotranspiration in the basin. In addition, the mining of coal has caused an increase in stratum fissures and surface subsidence, which has led to an increased rainfall infiltration, resulting in attenuation of runoff.
汾河上游 / Budyko假设 / Choudhury-Yang公式 / 径流衰减 / 归因分析 {{custom_keyword}} /
Upper Fenhe River / Budyko hypothesis / Choudhury-Yang formula / runoff attenuation / attribution analysis {{custom_keyword}} /
表1 基准期和变化期的参数统计表 (mm)Tab.1 The value of R, P, E0 and n in base-period and change-period |
参数 | R | P | E 0 |
---|---|---|---|
基准期(1961-1980) | 77.8 | 489.9 | 842.5 |
变化期(1981-2016) | 50.2 | 458.3 | 848.2 |
变化量(△) | -27.6 | -31.6 | 5.7 |
表2 研究区特征及径流弹性系数Tab.2 The characteristic and runoff elasticity coefficient of research area |
1961-2016年长系列平均/mm | 径流弹性系数 | |||||||
---|---|---|---|---|---|---|---|---|
降雨量(P) | 潜在蒸散发(E 0) | 径流深(R) | 干旱指数(E 0/P) | 下垫面参数 (n) | | | | |
469.6 | 846.2 | 60.1 | 1.8 | 1.98 | 2.62 | -1.62 | -1.89 |
表3 径流变化归因分析 (mm)Tab.3 Attribution analysis of runoff attenuation |
参数 | 基准期 | 变化期 | 变化量 | 驱动的径流变化量 | 贡献率/% |
---|---|---|---|---|---|
R | 77.8 | 50.2 | -27.6 | ||
P | 489.9 | 458.3 | -31.6 | -10.6 | 39.7 |
E 0 | 842.5 | 848.2 | 5.7 | -0.7 | 2.5 |
n | 1.827 | 2.096 | 0.269 | -15.4 | 57.8 |
1 |
颜时延,平建华,吴泽宁. 汾河水库控制流域径流突变及其驱动因素[J]. 南水北调与水利科技,2017,15(6):45-50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
袁瑞强,龙西亭,王鹏. 山西省降水量时空变化及预测[J]. 自然资源学报,2015,30(4):651-663.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
赵云,胡彩虹,胡珊. 汾河和沁河流域入黄径流锐减事实分析[J]. 水电能源科学,2012,30(3):31-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
袁瑞强,张文新,王鹏. 引黄调水对汾河受水区水环境的影响[J]. 自然资源学报,2018,33(8):1 416-1 426.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘昌明,李道峰,田英. 基于DEM的分布式水文模型在大尺度流域应用研究[J]. 地理科学进展,2003,22(5):437-445.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
张树磊,杨大文,杨汉波. 1960-2010年中国主要流域径流量减小原因探讨分析[J]. 水科学进展,2015,26(5):605-613.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
张连鹏,刘登峰,张鸿雪. 气候变化和人类活动对北洛河径流的影响[J]. 水力发电学报,2016,35(7):55-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
曹文旭. 基于Budyko假设的潮河流域气候和植被变化对实际蒸散发的影响研究[J]. 生态学报,2018(16):5 750-5 758.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
邸富宏. 基于MODIS的近10年来汾河上游植被动态变化监测[J]. 林业资源管理,2015(4):109-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
党晋华,赵颖,马晓勇,等.汾河水库上游流域土地利用类型变化特征及其水环境效应研究[J].水资源与水工程学报,2017,28(1):62-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |