
级间导叶数对水轮机模式液力透平性能的影响
李延频, 蒋雨煊, 张自超, 陈金保, 陈德新
级间导叶数对水轮机模式液力透平性能的影响
The Influence of the Number of Guide Vanes Between Stages on the Performance of Hydraulic Turbine in Turbine Mode
为研究按水力原动机理论设计的多级水轮机模式液力透级间导叶对其性能的影响,以一个二级水轮机模式液力透平为研究对象,设计了5种导叶数不同的新型空间级间导叶作为其级间导叶,利用数值分析进行定常及非定常数值计算,获得了5种模型的外特性曲线、内部流态以及压力脉动数据,并进行分析。结果显示:随着级间导叶数增加,液力透平效率先增后减,可利用水头呈现递增趋势,新型空间导叶和转轮内部水头损失均先增加后减小,导叶数为12时效率达到最高。导叶数增加,一级转轮脉动幅值增加,二级转轮内部主频压力脉动幅值呈现减小趋势,新型空间导叶内部进出口处脉动幅值增大,适当的增加级间导叶数可以改善流道内部流态和减小透平内部压力脉动幅值。
In order to study the influence of the guide vanes on the performance of the multi-stage turbine mode designed according to the theory of hydraulic prime mover, this paper takes the first stage of a two-stage turbine mode as the research object, designs five new-type space stage guide vanes with different number of guide vanes as its interstage guide vanes The external characteristic curve, internal flow pattern and pressure fluctuation data of each component were analyzed. The results show that: with the increase of the number of inter stage guide vanes, the efficiency of hydraulic turbine first increases and then decreases, and the available water head presents an increasing trend. The internal head loss of the new space guide vane and runner first increases and then decreases, and the efficiency reaches the highest when the number of guide vanes is 12. With the increase of the number of guide vanes, the pulsation amplitude of the first stage runner increases, while the amplitude of the main frequency pressure fluctuation in the second stage runner decreases. The fluctuation amplitude at the inlet and outlet of the new type of space guide vane increases. Properly increasing the number of guide vanes can improve the flow pattern in the runner and reduce the pressure fluctuation amplitude in the turbine.
级间导叶 / 液力透平 / 数值计算 / 外特性 / 压力脉动 {{custom_keyword}} /
inter-stage guide vane / hydraulic turbine / numerical calculation / external characteristics / pressure fluctuation {{custom_keyword}} /
表1 各部件设计参数Tab.1 Design parameters of various components |
部件 | 变量 | 数值 | 备注 |
---|---|---|---|
整机 | 设计流量/(m3·s-1) | 0.8 | |
设计转速/(r·min-1) | 1 500 | ||
设计水头/m | 390 | ||
转轮 | 进口直径D 1/mm | 500 | |
出口直径D 2/mm | 250 | ||
叶片数Z/片 | 15 | 后弯/前弯 | |
进口安放角β 1/(°) | 122 | 后弯/前弯 | |
进口安放角β 2/(°) | 46 | 后弯/前弯 | |
导水机构 | 首级导叶出口角/(°) | 13.44 | 11~18 |
首级导叶片数量 | 14 | 8~14 | |
蜗壳 | 进口直径/mm | 27.4 | |
基圆直径/mm | 710 | ||
断面形状 | 圆形 | ||
出水室 | 环形出水室 |
图11 一级转轮内压力脉动频域图Fig.11 Frequency domain diagram of pressure fluctuation in primary runner |
表2 一级转轮内最大脉动压力值 (kPa)Tab.2 Maximum pulsating pressure value in the primary runner |
监测点 | 最大脉动压力值 | ||||
---|---|---|---|---|---|
导叶数6 | 导叶数8 | 导叶数10 | 导叶数12 | 导叶数13 | |
9 | 3 568.261 | 3 785.830 | 3 667.265 | 3 714.353 | 3 871.03 |
10 | 3 078.419 | 3 315.249 | 3 182.437 | 3 238.945 | 3 343.78 |
11 | 2 725.199 | 2 969.539 | 2 843.620 | 2 895.260 | 3 025.40 |
图12 二级转轮内压力脉动频域图Fig.12 Frequency domain diagram of pressure fluctuation in secondary runner |
表3 二级转轮内最大脉动压力值 (kPa)Tab.3 Maximum pulsating pressure value in the secondary runner |
监测点 | 最大脉动压力值 | ||||
---|---|---|---|---|---|
导叶数6 | 导叶数8 | 导叶数10 | 导叶数12 | 导叶数13 | |
16 | 1 168.806 | 1 033.34 | 970.926 | 1 119.148 | 887.048 |
17 | 624.890 | 469.519 | 563.179 | 700.653 | 540.958 |
18 | 344.553 | 415.278 | 367.482 | 443.800 | 329.24 |
图13 级间导叶内压力脉动频域图Fig.13 Frequency domain diagram of pressure fluctuation in interstage guide vane |
表4 级间导叶内最大脉动压力值 (kPa)Tab.4 Maximum pulsating pressure value in the interstage guide vane |
监测点 | 最大脉动压力值 | ||||
---|---|---|---|---|---|
导叶数6 | 导叶数8 | 导叶数10 | 导叶数12 | 导叶数13 | |
12 | 1 728.842 | 2 589.791 | 2 115.111 | 2 203.493 | 2 465.194 |
13 | 1 916.549 | 1 904.452 | 2 124.918 | 2 154.016 | 2 284.586 |
14 | 1 720.579 | 1 037.794 | 1 742.906 | 1 868.904 | 1 950.720 |
1 |
王晓晖,杨军虎,史凤霞.能量回收液力透平的研究现状及展望[J].排灌机械工程学报,2014,32(9):742-747.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张阳,冀春俊,孙卉,等.径向导叶与空间导叶的优劣分析与试验[J].热科学与技术,2017,16(5):425-430.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
袁丹青,石荣,韩泳涛,等.深井离心泵新型空间导叶设计及优化[J].江苏大学学报(自然科学版),2015,36(6):661-665.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
袁丹青,韩泳涛,丛小青,等.多级离心泵新型空间导叶设计及优化分析[J].排灌机械工程学报,2015,33(10):853-858.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
杨军虎,龚朝晖,夏书强,等.导叶对液力透平性能影响的数值分析[J].排灌机械工程学报,2014,32(2):113-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
纪运广,徐洋洋,李洪涛,等.导叶开度对径向叶片式液力透平性能影响研究[J].沈阳工程学院学报(自然科学版),2018,14(2):107-111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
史广泰,杨军虎,刘小兵,等.导叶对液力透平机组工作稳定性的影响[J]. 振动工程学报,2016,29(4):609-615.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
刘浩然.多级液力透平参数之间关系的研究[D].兰州:兰州理工大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王亚猛. 水轮机模式液力透平级间导叶的优化[D].郑州:华北水利水电大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
柴立平, 张舜鑫, 陈亮,等. 导叶时序效应对液力透平性能影响的研究[J]. 中国农村水利水电,2019(1):174-180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
薛睿, 李家文, 唐飞. 多级泵级间导叶的优化与数值仿真[J]. 火箭推进, 2011,37(5):24-29,68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
王晨阳,余波,李欢,等.不同导叶数对超低比转速水轮机水力性能的影响[J].水力发电,2020,46(2):71-74,108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
董雷,张丽萍,李宁,等.基于CFD的主要控制参数对肘形进水流道水力性能的影响研究[J].中国农村水利水电,2020(12):57-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
陈超,李彦军,裴吉,等.多工况空化条件下混流泵装置压力脉动试验研究[J].中国农村水利水电,2019(1):158-163.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
赵梦晌,郑源,杨春霞,等.基于流体体积模型的叶片数对水车性能的影响[J].排灌机械工程学报,2020,38(7):677-682.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
王成斌,金雷,张帅,等.径向导叶式潜水泵内部流动与非定常特性研究[J].中国农村水利水电,2019(12):165-172.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |