
基于SWAT模型和降水随机模拟的径流预测
张金萍, 王宇昊
基于SWAT模型和降水随机模拟的径流预测
Runoff Prediction Based on SWAT Model and Stochastic Simulation of Precipitation
降水为气象数据中对径流模拟结果影响最大的因素,对径流过程造成的影响较大,为预测未来不同量级降水情景下的径流过程,将SWAT模型和耦合Markov链-Gamma分布的降水随机模拟相结合。以王快水库以上流域为研究区域,构建SWAT模型并进行参数率定和验证。以阜平站60 a逐日降水资料为基础,通过构建不同量级降水下的随机模拟模型生成年降水量为800、550、300 mm相对应的日降水过程,将其输入SWAT模型输出月径流过程。结果表明:该SWAT模型对于研究区域径流的模拟结果良好;3种降水情景下的年径流量分别为5.97、2.79、1.51 m3/s,最大月径流量分别为17.81、7.01、4.08 m3/s。
Rainfall is the most important factor in the meteorological data, which has great influence on the runoff process. In order to predict the runoff process under different precipitation scenarios in the future, SWAT model and stochastic precipitation simulation coupled with Markov chain-Gamma distribution are combined. Taking the basin above Wangkuai Reservoir as the research area, this paper constructs SWAT model and calibrates and verifies its parameters. Based on daily precipitation data of Fuping Station in 60 years, the daily precipitation process corresponding to the annual precipitation of 800, 550 and 300 mm are generated by constructing stochastic simulation model under different precipitation levels, which are input into SWAT model and output monthly runoff process. The results show that the SWAT model has good simulation results for the runoff in the study area; the annual runoff under three precipitation scenarios is 5.97, 2.79 and 1.51 m3/s, and the maximum monthly runoff is 17.81, 7.01 and 4.08 m3/s respectively.
SWAT模型 / Markov链 / Gamma分布 / 降水随机模拟 / 径流预测 {{custom_keyword}} /
SWAT model / Markov chain / Gamma distribution / precipitation stochastic simulation / runoff prediction {{custom_keyword}} /
表1 参数敏感性分析Tab.1 Parameter sensitivity analysis |
敏感性排序 | 参数名称 | 物理意义 | t-Stat | 最优参数值 |
---|---|---|---|---|
1 | v_CN2.mgt | 湿润条件下的初始SCS径流曲线数 | -11.10 | 57.86 |
2 | v_GW_DELAY.gw | 地下水延迟时间 | 3.40 | 150.50 |
3 | r_SOL_BD. sol | 土壤饱和容重 | 2.75 | 0.30 |
4 | v_CANMX.hru | 最大冠层截留量 | 2.18 | 16.63 |
5 | v_SLSUBBSN.hru | 平均坡长 | 2.00 | 146.22 |
6 | v_ALPHA_BF.gw | 基流alpha因子 | -1.49 | 0.40 |
7 | r_SOL_K. sol | 土壤饱和水力传导度 | 1.40 | 0.22 |
8 | v_HRU_SLP.bsn | 平均坡度 | 1.35 | 0.65 |
9 | v_ESCO.hru | 土壤蒸发补偿系数 | -1.24 | 0.81 |
10 | v_REVAPMN.gw | 浅层含水层再蒸发或渗透到深层含水层的阈值深度 | 1.09 | 303.83 |
11 | v_GWQMN.gw | 浅层含水量产生基流的阈值深度 | -0.96 | 791.67 |
12 | v_EPCO.hru | 植物吸收补偿因子 | 0.84 | 0.68 |
13 | r_SOL_AWC. sol | 土壤层有效水含量 | 0.82 | 0.03 |
14 | v_CH_K2.rte | 主河道河床有效水力传导度 | 0.78 | 91.96 |
15 | v_TLAPS.sub | 气温垂直递减率 | -0.77 | 9.30 |
16 | r_SOL_ALB. sol | 湿润土壤反照率 | -0.76 | 0.01 |
17 | v_RCHRG_DP.gw | 深层水层渗透比 | 0.61 | 0.02 |
图7 1958-2017年阜平站年降水量Fig.7 Annual precipitation at Fuping Station from 1958 to 2017 |
表2 年降水量状态划分标准Tab.2 Standard for dividing annual precipitation status |
状态 | I | II | III |
---|---|---|---|
年降水量 | [257.4,507.3) | [507.3,677.2) | [677.2,1 066.7) |
状态样本数 | 22 | 25 | 13 |
汛期降水占比均值/% | 84.5 | 86.2 | 89.3 |
图9 各状态1、7、12月降水量Gamma分布Q-Q图Fig.9 Q-Q chart of Gamma distribution of precipitation in January, July and December under different states |
1 |
刘海滢,甘永德,贾仰文,等.考虑土壤膨胀性的流域水文模型应用研究[J].中国农村水利水电,2020(4):92-96,101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
桑学锋,周祖昊,秦大庸,等.改进的SWAT模型在强人类活动地区的应用[J].水利学报,2008,39(12):1 377-1 383,1 389.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王博威,李建柱,冯平.土地利用变化对潘家口水库控制流域径流影响[J].水利学报, 2018,49(3):379-386.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
廖亚一,吕海深,李占玲.气象数据不确定性对SWAT模型径流模拟影响[J].人民长江, 2014,45(9):34-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
屈吉鸿,石红旺,李志岩.基于SWAT模型的青龙河流域气候变化径流响应研究[J].水力发电学报, 2015,34(4):8-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
石小平.中国降水的随机模拟[D].西安:西北农林科技大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
廖要明,陈德亮,高歌,等.中国天气发生器降水模拟参数的气候变化特征[J].地理学报,2009,64(7):871-878.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王斌,付强,王忠波,等.基于降水随机模拟的旱作区农业旱情等级划分方法[J].中国农村水利水电, 2011(3):167-170.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
秦道清,邓彩云,王红瑞,等.陕西省宝鸡市日月耦合降水随机序列模拟[J].水电能源科学,2018,36(8):5-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李建柱,冯平.降雨因素对大清河流域洪水径流变化影响分析[J].水利学报,2010,41(5):595-600,607.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
孟现勇,王浩,雷晓辉,等.基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J].生态学报,2017,37(21):7 114-7 127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
孟现勇,师春香,刘时银,等.CMADS数据集及其在流域水文模型中的驱动作用:以黑河流域为例[J].人民珠江,2016,37(7):1-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
王福增.黄淮海地区降水随机模拟模型及评价[J].人民黄河,2017,39(8):15-18,25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
廖要明,陈德亮,高歌,等.中国天气发生器降水模拟参数的气候变化特征[J].地理学报,2009,64(7):871-878.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |