
基于MIC-TCN-Attention的抽水蓄能机组发电电动机定子温度预警方法研究
常玉红, 吴月超, 何铮, 宋旭峰, 王大强, 李超顺
基于MIC-TCN-Attention的抽水蓄能机组发电电动机定子温度预警方法研究
Research on the Generator Stator Temperature Early Warning Method of Pumped Storage Unit Based on MIC-TCN-Attention
抽水蓄能(抽蓄)机组设备实时监测能提供有效运行信息并指示运行人员做出相应措施,但发电电动机发热散热过程复杂,实时监测信息难以满足温度预警要求。为此,提出了一种基于时间卷积网络(Temporal Convolutional Network, TCN)温度实时动态预警模型。首先,利用最大信息系数(Maximal Information Coefficient, MIC)分析相关变量集;其次,选择合适输入维度,并建立以历史监测数据进行训练的TCN与注意力机制(Attention Mechanism)回归预测模型,通过测试与其他深度模型进行比较,验证了所提模型的实用性价值;最后,为增加实时预警有效性,采用统计学理论正态检验指标峰度与偏度分析残差序列集并设计了能适应于现场真实情况的实时预警策略。通过大型抽蓄电站机组的实时数据测试,所提出的方案能较好满足现场的实际需求。
Online monitoring of hydropower equipment can provide effective operation information and instruct operators to take corresponding measures, but the heat generation and heat dissipation process of the generator motor is complex, and the short-term warning information is difficult to meet the real needs of the site. Therefore, a time-based convolution network (Temporal Convolutional Network, TCN) temperature real-time dynamic early warning model is proposed in this paper. First, the maximum information coefficient (Maximal Information Coefficient, MIC) is used to analyze the relevant variable set. Second, the appropriate input dimension is set, and TCN and attention trained with historical monitoring data Attention Mechanism regression prediction model is established. Compared with other deep models through testing, the practical value of the proposed model is verified. Finally, in order to increase the effectiveness of real-time early warning, this paper uses the index kurtosis and skewness of the statistical theory to analyze the residual sequence set and design a real-time early warning strategy that can adapt to the real situation on site. The proposed scheme can better meet the actual needs of the site through the real-time data test of a large power station hydropower unit.
时间卷积网络 / 注意力机制 / 最大信息系数 / 实时预警 {{custom_keyword}} /
TCN / attention mechanism / MIC / online warning {{custom_keyword}} /
表1 对比模型的参数设置Tab.1 The parameter settings of the comparison models |
模型 | 模型参数设定 |
---|---|
TCN-Attention 网络模型 | 输入向量: (样本数, 15, 5);TCN层:1;Attention 层:1; TCN神经元数:32;.全连接层: 3;Dense层神经元数:分别为20, 10, 1; 训练次数:20。梯度优化器: Adam。 |
TCN 网络模型 | 输入向量: (样本数, 15, 5);TCN层:1;TCN神经元数:32;.全连接层: 3;Dense层神经元数:分别为20, 10, 1; 训练次数:20。梯度优化器: Adam。 |
DGRU-Attention网络模型 | 输入向量: (样本数, 15, 5);GRU层:3;Attention 层:1;GRU神经元数:32, 20;全连接层: 2;Dense层神经元数:分别为10, 1; 训练次数:50。梯度优化器: Adam。 |
ANN 网络模型 | Dense层:4;Dense层神经元数:分别为32,20, 10, 1;训练次数:20。梯度优化器: Adam。 |
DGRU网络模型 | 输入向量: (样本数, 15, 5);GRU层:3;GRU神经元数:32, 20;.全连接层: 2;Dense层神经元数:分别为10, 1; 训练次数:20。梯度优化器: Adam。 |
表2 局部预测性能指标对比Tab. 2 Comparison of local prediction performance indicators |
工况 | 抽水态 | 发电态 | |||
---|---|---|---|---|---|
状态 | 发热 | 散热 | 发热 | 散热 | |
评价指标(均值) | RMSE | RMSE | RMSE | RMSE | |
DGRU模型 | 0.496 | 0.489 | 0.513 | 0.683 | |
TCN模型 | 0.716 | 0.170 | 0.568 | 0.252 | |
TCN-Attention模型 | 0.097 | 0.165 | 0.103 | 0.089 |
表3 预测性能指标对比Tab. 3 Comparison of forecasting performance indexes |
运行状态 | 发电态 | 抽水态 | |||||||
---|---|---|---|---|---|---|---|---|---|
评价指标 | RMSE | MAPE | Pre Time/s | Time/s | RMSE | MAPE | Pre Time/s | Time/s | |
ANN模型 | 0.518 | 0.566 | 0.08 | 82.41 | 0.597 | 0.578 | 0.08 | 61.31 | |
GRU模型 | 0.185 | 0.263 | 0.13 | 623.13 | 0.151 | 0.177 | 0.16 | 552.09 | |
TCN模型 | 0.168 | 0.251 | 0.08 | 591.12 | 0.132 | 0.139 | 0.10 | 438.06 | |
GRU-Attention模型 | 0.153 | 0.191 | 0.17 | 676.10 | 0.176 | 0.219 | 0.19 | 563.23 | |
TCN-Attention模型 | 0.101 | 0.111 | 0.09 | 601.32 | 0.094 | 0.108 | 0.10 | 449.46 |
图7 持续噪声后的误差序列与短期干扰后的误差序列Fig.7 Error sequence after continuous noise and Error sequence after short-term interference |
图8 持续干扰下滚动残差区间偏度与峰度值Fig.8 The skewness and kurtosis value of the rolling residual interval after continuous noise |
1 |
桂中华, 张浩, 孙慧芳, 等. 水电机组振动劣化预警模型研究及应用[J].水利学报,2018,49(2):216-222.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张立军, 徐杰, 孟德建. 基于Preisach模型的永磁同步轮毂电机损耗及温度场建模与分析[J].机械工程学报,2019,55(22):33-40,51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王婷婷. 空冷汽轮发电机定子主绝缘的电-热场研究[D].北京:北京交通大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张毛毛. 基于深度双向加权GRU的回转窑烧结温度预测[D].长沙:湖南大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
潘罗平. 基于健康评估和劣化趋势预测的水电机组故障诊断系统研究[D].北京:中国水利水电科学研究院,2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
尹诗,侯国莲,于晓东,等.基于Bi-RNN的风电机组主轴承温度预警方法研究[J].郑州大学学报(工学版),2019,40(5):45-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
吕海灿,王伟峰,赵兵,等. 基于Wide&Deep-LSTM模型的短期台区负荷预测[J].电网技术,2020,44(2):428-436.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈振宇,刘金波,李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J].电网技术,2020,44(2):614-620.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
郭鹏,李淋淋,马登昌. 基于IPSO-BP的风电机组齿轮箱状态监测研究[J].太阳能学报,2012,33(3):439-445.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
薛小明,曹苏群,李超顺,等. 基于能量熵重构与支持向量回归的水电机组状态趋势预测[J].水电能源科学,2019,37(9):139-142,135.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
陈如意,江军,陈珉,等. 基于最大信息系数的变压器过热故障特征选择[J].电力工程技术,2020,39(2):140-145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
胡松,江亚群,黄纯. 基于偏度系数的变压器励磁涌流识别方法[J].电网技术,2018,42(6):1 954-1 959
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
熊音笛,刘开培,秦亮,等. 基于时序数据动态天气划分的短期风电功率预测方法[J].电网技术,2019,43(9):3 353-3 359.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |