
岩溶地区水库库盆及库岸防渗复合土工膜应力应变分析
杨洋, 刘辉, 黄诗渊, 李玉桥
岩溶地区水库库盆及库岸防渗复合土工膜应力应变分析
Stress-strain Analysis of Anti-seepage Composite Geomembrane of Reservoir Basin and Reservoir Bank in Karst Areas
为探讨复合土工膜在水库防渗应用中的应力应变特性,以位于岩溶地区的白沙塘水库采用复合土工膜进行库盆及库岸防渗处理为例,采用有限元软件MIDAS GTS NX 对复合土工膜的应力和应变进行了计算分析。结果表明:复合土工膜与水库剖面的变形规律一致,其最大变形量略小于水库剖面的最大变形量;在库水位和地下水位变动作用下,库岸土体会向库盆发生横向变形;水库蓄水达到校核水位,地下水下降至基岩面时为最危险工况,水库剖面及复合土工膜的最大下沉变形分别为30.83和29.67 cm,最大横向变形分别为9.92和8.58 cm,拉力安全系数及拉应变安全系数均小于允许安全系数5.0。
In order to explore the stress-strain characteristics of composite geomembrane in the application of reservoir seepage control, the Baishatang Reservoir in karst areas uses composite geomembrane for reservoir basin and bank seepage control as an example, the finite element software MIDAS GTS NX is used to calculate and analyze the stress and strain of the composite geomembrane. The results show that the deformation law of the composite geomembrane is consistent with that of the reservoir profile, and its maximum deformation is slightly smaller than the maximum deformation of the reservoir profile. Under the action of changes in the reservoir water level and groundwater level, the soil on the reservoir bank will deform laterally toward the reservoir basin. Reservoir storage reaches the check level, and when the underground water drops to the bedrock surface, it is the most dangerous working condition. The maximum sinking deformation of the reservoir profile and composite geomembrane are 30.83 and 29.67 cm, and the maximum lateral deformation is 9.92 and 8.58 cm, respectively. The tensile safety factor and tensile strain safety factor are both less than the allowable safety factor 5.0.
复合土工膜 / 有限元软件 / 应力应变特性 / 安全系数 {{custom_keyword}} /
composite geomembrane / finite element software / stress-strain characteristics / safety factor {{custom_keyword}} /
表1 复合土工膜主要力学指标Tab.1 Main mechanical indexes of composite geomembrane |
测试项目 | 方向 | 指标 | 实际检测值 |
---|---|---|---|
断裂强度/(kN·m-1) | 纵向 | ≥20.0 | 33.0 |
横向 | ≥20.0 | 28.7 | |
断裂伸长率/% | 纵向 | 30~100 | 47.9 |
横向 | 30~100 | 43.2 | |
梯形撕裂强度/(kN·m-1) | 纵向 | ≥0.7 | 1.029 |
横向 | ≥0.7 | 0.927 | |
CBR顶破强度/(kN·m-1) | - | ≥3.2 | 4.071 |
表2 库盆岩土体材料参数(天然/饱和)Tab.2 Material parameters of reservoir basin rock and soil (natural/saturated) |
材料 | γ/(kN·m3) | E/kPa | μ | c/kPa | φ/(°) |
---|---|---|---|---|---|
黏土层 | 16.0/16.6 | 2 500/1 750 | 0.30 | 10/9 | 5/4 |
细砂层 | 18.0/18.4 | 6 000/4 200 | 0.28 | 0/0 | 22.0/17.6 |
碎石层 | 18/18.3 | 16 000/11 200 | 0.28 | 0/0 | 28.0/22.4 |
黏土夹碎石 | 16.1/17.0 | 2 500/1 750 | 0.30 | 10/9 | 5/4 |
卵砾石 | 16.1/17.0 | 18 000/126 000 | 0.27 | 0/0 | 30/28 |
基岩 | 18.5/19.0 | 1 900 000/1 330 000 | 0.31 | 350/180 | 27/26 |
表3 白沙塘水库3-3剖面下沉变形计算结果Tab.3 Calculation results of subsidence and deformation of section 3-3 of Baishatang Reservoir |
类别 | 工况1-1 | 工况1-2 | 工况2-1 | 工况2-2 | 工况3-1 | 工况3-2 |
---|---|---|---|---|---|---|
水库剖面最大下沉变形/cm | 10.15 | 16.95 | 21.80 | 24.34 | 28.25 | 30.83 |
水库剖面最大横向变形/cm | 3.34 | 3.84 | 7.89 | 8.44 | 9.25 | 9.92 |
复合土工膜最大下沉变形/cm | 9.39 | 15.45 | 21.26 | 23.82 | 27.12 | 29.67 |
复合土工膜最大横向变形/cm | 2.78 | 3.18 | 6.87 | 7.48 | 8.00 | 8.58 |
复合土工膜最大单宽拉力/(kN·m-1) | 2.63 | 2.82 | 5.37 | 5.83 | 6.38 | 6.86 |
复合土工膜最大单宽拉应变/% | 5.48 | 5.87 | 11.18 | 12.15 | 13.29 | 14.30 |
1 |
宋德荣,杨思维. 中国西南岩溶地区生态环境问题及其控制措施[J].中国人口·资源与环境,2012,22():49-53.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
杨良权,雷安平,吴广平,等. 综合勘察技术在天开水库渗漏分析中的应用[J]. 科学技术与工程,2018,18(24):28-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
韩 凯,陈玉玲,陈贻祥,等. 岩溶病害水库的渗漏通道探测方法:以广西全州县洛潭水库为例[J]. 水力发电学报,2015,34(11):116-125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陶秋生,刘 健,郑道华. 岩溶地区利用天然坝体修建水库的尝试:以孔梁水库为例[J]. 水利水电技术,2009,40(11):99-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
IC0LD. Geomembrane sealing systems for dams: design principles and return of experience (Bulletin 135)[R]. Paris: The International Commission on Large Dams,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
周奕琦,沈振中,王 伟,等. 复合土工膜库盆防渗上水库应力变形性态分析[J]. 南水北调与水利科技,2014,12(2):160-163,174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
岑威钧,温朗昇,和浩楠. 水库工程防渗土工膜的强度、渗漏与稳定若干关键问题[J]. 应用基础与工程科学学报,2017,25(6): 1 183-1 192.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
姜海波. 复合土工膜心墙与斜墙高土石坝应力应变研究[J]. 长江科学院院报,2014,31(1):53-57,76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
黄 举. 堆石坝中复合土工膜的应力变形分析[J]. 水利规划与设计,2017(2):115-119.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
尚 层,李玉建,徐千军,等. 复合土工膜不同锚固型式对膜应力变形的影响研究[J]. 中国农村水利水电,2012(10):72-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
岑威钧,沈长松,童建文. 深厚覆盖层上复合土工膜防渗堆石坝筑坝特性研究[J]. 岩土力学,2009,30(1):175-180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
孔凡辉,花俊杰,王丽华,等. 深厚覆盖层上水库全库盆防渗复合土工膜应力变形分析[J]. 中国农村水利水电,2018(5):152-155.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |