
基于有限元法的跌水闸闸室结构抗震安全复核研究
郭博文, 鲁立三, 王荆, 宋力
基于有限元法的跌水闸闸室结构抗震安全复核研究
Research on the Seismic Safety Recheck of Drop Gate Chamber Structure Based on Finite Element Method
抗震安全复核是水闸安全鉴定工作中的重要组成部分,为保证水闸结构安全运行,需要进行抗震安全复核研究。以某跌水闸为例,基于ADINA有限元分析软件,建立了跌水闸闸室结构三维有限元模型,采用振型分解反应谱法对闸室结构进行了地震动响应计算分析,并根据计算结果对跌水闸闸室结构进行了抗震安全评价。计算结果表明:①闸墩与闸底板相交处出现了2.00 MPa拉应力,根据结构力学方法复核,该处能承受的最大拉应力为4.41 MPa,满足安全需求;②跌水闸公路桥跨中底部位置和启闭机房底板部分区域出现了较大拉应力区,其数值远超混凝土动态轴心抗拉强度标准值,为安全起见,宜采取相应的抗震加固措施;③跌水闸闸室结构抗滑稳定安全系数大于《水闸设计规范》(SL265-2016)标准值,满足安全需求;④跌水闸闸室结构抗震安全满足《水工建筑物抗震设计标准》(GB51247-2018)要求,但存在不影响总体安全的缺陷,其抗震等级评定为B级。
Seismic safety review is an important part of sluice safety appraisal. In order to ensure the safe operation of the sluice structure, seismic safety review research is required. Taking a drop sluice as an example, based on ADINA finite element analysis software, a three-dimensional finite element model of the drop gate chamber structure is established, and the seismic response of the chamber structure is calculated and analyzed by using the mode decomposition response spectrum method, and the seismic safety evaluation of the sluice is carried out according to the calculation results. The results show that: ①there is a tensile stress of 2.00 MPa at the intersection of the pier and the bottom plate of the gate. According to the structural mechanics method, the maximum tensile stress at this place is 4.41 MPa, which meets the safety requirements. ②There is a large tensile stress area at the bottom of the middle span of the highway bridge of the drop sluice and part of the bottom plate of the hoist room, which is far beyond the standard value of dynamic axial tensile strength of concrete. For the sake of safety, the corresponding anti-seismic reinforcement measures should be taken. ③The anti-sliding stability safety factor of the sluice chamber structure is greater than the standard value of sluice design code (SL 265-2016), which meets safety requirements. ④The anti-seismic safety of the drop gate chamber structure meets the requirements of the standard for the seismic design of hydraulic structures (GB 51247-2018), but there are seismic defects which do not affect the overall safety, and its seismic grade is evaluated as Grade B.
闸室结构 / 数值模拟 / 振型分解反应谱法 / 抗震安全复核 {{custom_keyword}} /
chamber structure / numerical simulation / mode decomposition response spectrum method / seismic safety review {{custom_keyword}} /
表1 混凝土材料参数 |
材料号 | 材料名 | 密度/(kg·m-3) | 弹模/GPa | 泊松比 | 动态轴心抗压强度标准值/MPa | 动态轴心抗拉强度标准值/MPa |
---|---|---|---|---|---|---|
1 | 闸底板 | 2 548.00 | 33.23 | 0.167 | 19.66 | 1.97 |
2 | 闸墩 | 2 548.00 | 31.20 | 0.167 | 16.22 | 1.62 |
3 | 公路桥 | 2 548.00 | 31.52 | 0.167 | 16.72 | 1.67 |
4 | 启闭机房 | 2 548.00 | 31.52 | 0.167 | 16.72 | 1.67 |
表2 不同工况下跌水闸闸室结构自振频率周期表 |
阶数 | 正常蓄水位工况 | |
---|---|---|
频率/Hz | 周期/s | |
1 | 4.038 | 0.248 |
2 | 4.178 | 0.239 |
3 | 7.708 | 0.130 |
4 | 13.013 | 0.077 |
5 | 13.820 | 0.072 |
表3 动静叠加下跌水闸闸室结构抗滑稳定计算分析表 |
工况 | 静力工况下竖向荷载/kN | 静力工况下水平向荷载/kN | 水平向地震惯性力/kN | 摩擦系数 | 抗滑稳定系数 | 规范值 |
---|---|---|---|---|---|---|
水平向地震惯性力朝上游 | 25 197.52 | 964.93 | -2 863.72 | 0.35 | 4.64 | 1.10 |
水平向地震惯性力朝下游 | 25 197.52 | 964.93 | 2 863.72 | 0.35 | 2.30 | 1.10 |
1 |
宋力,汪自力. 水闸安全评价及加固修复技术指南[M]. 郑州:黄河水利出版社,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
马利嘉,蔡荨,历丹丹. 基于有限元法的闸室抗震安全评价[J]. 水利水电技术,2017,48(3):30-33,70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
曾迪,邸庆霜. 水闸震害调查与抗震研究进展[J]. 水利水电技术, 2014,45(10):42-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
卢羽平. 水闸参数化三维有限元分析软件的研究[D]. 南京: 河海大学, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
孙瑞祥. 高层建筑结构竖向地震作用下振型分解反应谱法分析研究[D]. 兰州:兰州理工大学, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
胡晓. 水闸震害调查与分析[J]. 水力发电, 2009,35(5):18-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王雪奎. 黄河中下游水闸抗震能力分析[D]. 郑州: 华北水利水电大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
许新勇,康迎宾,罗全胜. 洹河景观水闸工程抗震安全评价研究[J]. 人民黄河,2012,34( 8):147-148.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
朱庆华,顾美娟. 水闸闸室抗震动力分析及措施[J]. 水电能源科学,2012,30(1):114-116,208.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
中华人民共和国住房和城乡建设部 等. 水工建筑物抗震设计标准:GB51247-2018 [S]. 北京:中国计划出版社,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
中华人民共和国水利部. 水工混凝土结构设计规范:SL191-2008 [S]. 北京:中国水利水电出版社,2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
中华人民共和国水利部. 水闸设计规范:SL265-2016 [S]. 北京:中国水利水电出版社,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
中华人民共和国水利部. 水闸安全评价导则:SL214-2015 [S]. 北京:中国水利水电出版社,2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |