
穿孔叶片离心泵空化性能的数值模拟
陶成, 宋文武, 邓强, 宿科, 周月
穿孔叶片离心泵空化性能的数值模拟
Numerical Simulation of Cavitation Performance of Perforated Vane Centrifugal Pumps
为分析进口位置附近开孔对离心泵空化性能的影响,以某低比转速离心泵作为研究对象,利用CFD仿真软件基于RNG k-ε湍流模型对模型进行全流道定常湍流空化数值模拟,研究在叶片空化初生位置,开孔面积、开孔形状对离心泵性能的影响。研究发现,对于本文的低比转数离心泵,开孔面积过大会造成能量损失,当孔型为梅花孔时,开孔面积过小会加剧叶轮空化;不同开孔面积,不同孔型对离心泵空化性能影响差异较大,当穿孔面积为1/4
For the analysis of important position near the hole of the influence of the centrifugal pump cavitation performance, with a low specific speed centrifugal pump as the research object, the CFD simulation software is used based on RNG k-ε turbulence model to full port steady turbulent flow cavitation model numerical simulation, study in blade cavitation primary position, opening area, open hole shape affect the performance of centrifugal pumps. It is found that for the low specific revolution centrifugal pump in this paper, too large opening area will cause energy loss. When the hole type is quincunx hole, too small an opening area will aggravate impeller cavitation. The cavitation performance of the centrifugal pump is significantly affected by different hole areas and different hole types. When the hole area is 1/4
离心泵 / 穿孔面积 / 孔型 / 空化 / 低压区 {{custom_keyword}} /
centrifugal pump / perforation area / pass / cavitation / low pressure area {{custom_keyword}} /
表1 孔型-开孔面积方案组合Tab.1 Pass-hole area combination |
开孔形状 | 开孔面积/mm2 | ||
---|---|---|---|
1/4π | 9/4π | 25/4π | |
圆形孔 | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ |
方形孔 | 方案Ⅳ | 方案Ⅴ | 方案Ⅵ |
梅花形孔 | 方案Ⅶ | 方案Ⅷ | 方案Ⅸ |
表2 网格数无关性验证Tab.2 Grid number independence verification |
方案 | 网格数/万格 | 扬程/ m |
---|---|---|
1 | 158.67 | 91.152 |
2 | 226.20 | 92.557 |
3 | 352.45 | 92.562 |
图13 叶轮中间截面湍动能分布Fig.13 The turbulent kinetic energy distribution in the middle section of the impeller |
1 |
关醒凡. 现代泵技术手册[M]. 北京:中国宇航出版社,1995.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
黄继汤. 空化与空蚀的原理及应用[M]. 北京:清华大学出版社,1991.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
袁丹青,陈向阳,白滨,等. 水力机械空化空蚀问题的研究进展[J]. 排灌机械,2009,27(4):269-272.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
RAFAEL, Campos-Amezcua, Farid, et al. Numerical analysis of unsteady cavitating flow in an axial inducer[J]. Applied Thermal Engineering, 2015,75:1 302-1 310.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
宋文武,石建伟,魏立超,等. 高速离心泵回流漩涡及空化特性[J]. 机械工程学报,2020,56(4):95-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王维军,王洋,刘瑞华,等. 离心泵空化流动数值计算[J]. 农业机械学报,2014,45(3):37-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
刘小兵,胡全友,史广泰,等. 混输泵小流量工况的空化特性[J]. 排灌机械工程学报,2018,36(1):15-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
罗旭,宋文武,万伦,等. 高速离心泵空化特性研究[J]. 水力发电,2019,45(11):74-78,94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李金琼,宋文武,万丽佳. 粗糙度对离心泵进口回流非定常特性影响的研究[J]. 热能动力工程,2020,35(2):70-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
胡赞熬,王俊雄,祝宝山,等. 离心泵叶轮穿孔对空化性能的影响[J]. 热能动力工程,2018,33(10):44-51,106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
朱晓东,刘小兵,田长安. 翼型表面开孔对其空化性能的影响[J]. 中国农村水利水电,2020(2):83-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
赵伟国,潘绪伟,宋启策,等. 叶片进口边穿孔对离心泵空化性能的影响[J]. 排灌机械工程学报,2019,37(6):461-468.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
曹玉良,贺国,明廷锋,等. 水泵空化数值模拟研究进展[J]. 武汉理工大学学报(交通科学与工程版),2016,40(1):55-59,65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
王勇. 离心泵空化理论与技术[M]. 北京:科学出版社,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |