
高耐久性混凝土优化配比试验研究
潘自林, 顾靖超, 陆立国
高耐久性混凝土优化配比试验研究
Experimental Research on the Ratio Optimization of High Durability Concrete
陕甘宁革命老区供水工程属于强腐蚀环境,传统的以强度为目标,确定基准配合比后复验混凝土各项性能并予以优化的混凝土配合比设计方法,难以满足工程的耐久性要求。研究了不同水胶比、水泥品种、含气量、掺合料品种及其配比对混凝土强度、抗渗、抗冻、抗碳化以及抗氯离子和硫酸盐侵蚀等耐久性能的影响。混凝土配合比优化配比试验结果表明:水胶比0.31、50%普硅42.5水泥+30%矿粉+20%粉煤灰的引气混凝土配合比(56 d)性能可以达到C40F200W8KS150设计指标,抗渗等级超过W12,60 d快速碳化深度小于20 mm,抗冻等级≥F200,抗碳化性能可满足大气环境下(碳化)50 a的耐久性要求;硫酸盐侵蚀环境(Y3)下设计使用年限级别为100 a;氯盐环境(L2)下设计使用年限级别为100 a。
The water supply projects are exposed to highly corrosive environment in the old revolutionary base areas such as Shaanxi, Gansu and Ningxia. The effects of different water-binder ratios, cement types, gas content, admixtures and their ratios on the durability of concrete performance are studied, such as strength, impervious resistance, frost resistance, carbonization resistance, chloride ion and sulfate erosion resistance. The results show that when the water/cement ratio is 0.31/50%, the mix proportion of ordinary Portland cement, mineral powder and fly ash is 5∶3∶2, the comprehensive performance of the durability air-entraining concrete is optimal. The design index (56 d) can achieve C40F200W8KS150, impervious resistance grade is more than W12, 60 d rapid carbonization depth is less than 20 mm, frost resistance grade is over F200, and carbonation resistance can meet the atmospheric environment (carbide) 50 a durability requirements. Meanwhile, the design service life level is 100 a under sulphate environment (Y3) or chlorine environment (L2).
强腐蚀环境 / 高耐久性 / 混凝土 / 配合比 / 试验优化 {{custom_keyword}} /
high corrosive environment / durability / concrete / mix proportion / test optimization {{custom_keyword}} /
表1 配合比设计性能指标Tab.1 Performance index of mix ratio design |
序号 | 使用部位 | 设计指标 | 备注 |
---|---|---|---|
1 | 镇墩 | C30F150 | 抗硫水泥掺矿渣、粉煤灰 |
2 | 泵房封闭圈以上梁柱,副厂房 | C30 | 抗硫水泥掺矿渣、粉煤灰 |
3 | 进水闸 | C30F200W6 | 抗硫水泥掺矿渣、粉煤灰 |
4 | 出水池 | C30F200W6 | 抗硫水泥掺矿渣、粉煤灰 |
5 | 流量计井、冲水阀井 | C30F200W6 | 抗硫水泥掺矿渣、粉煤灰 |
6 | 前池 | C40F200W8 | 抗硫水泥 |
7 | 泵房封闭圈 | C40F200W8 | 抗硫水泥 |
表2 混凝土优化配合比及拌合物性能Tab.2 Optimization mix proportion of concrete and performance of mixture |
序号 | 编号 | 胶凝材料组成/ % | 砂率/% | 水胶比 | 材料用量/(kg·m-3) | 坍落度/mm | 含气量/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水泥 | 矿粉 | 粉煤灰 | 砂 | 碎石 | 水 | 减水剂 | 引气剂 | |||||||
1 | NHPC-1 | 50C+30S+20F | 40 | 0.40 | 181 | 109 | 73 | 754 | 1 131 | 145 | 2.9 | 0 | 150 | 1.8 |
2 | NHPC-2 | 50C+30S+20F | 35 | 0.37 | 196 | 118 | 78 | 633 | 1 175 | 145 | 1.57 | 0.078 | 75 | 3.9 |
3 | NHPC-3 | 50C+30S+20F | 40 | 0.37 | 196 | 118 | 78 | 721 | 1 082 | 145 | 3.17 | 0.039 | 150 | 4.2 |
4 | NHPC-4 | 50C+20S+30F | 40 | 0.37 | 196 | 78 | 118 | 718 | 1 077 | 145 | 3.17 | 0.039 | 160 | 3.8 |
5 | NHPC-5 | 50C+40S+10F | 40 | 0.37 | 196 | 159 | 39 | 725 | 1 088 | 145 | 3.17 | 0.039 | 145 | 4.4 |
6 | NHPC-6 | C100 | 40 | 0.34 | 441 | 0 | 0 | 711 | 1 067 | 150 | 3.53 | 0.044 | 140 | 4.1 |
7 | NHPC-7 | KC100 | 40 | 0.34 | 441 | 0 | 0 | 711 | 1 067 | 150 | 3.53 | 0.044 | 150 | 4.4 |
8 | NHPC-8 | KC100 | 41 | 0.34 | 441 | 0 | 0 | 751 | 1 080 | 150 | 3.53 | 0 | 140 | 1.9 |
9 | NHPC-9 | 50KC+30S+20F | 40 | 0.37 | 196 | 118 | 78 | 721 | 1 082 | 145 | 3.17 | 0.039 | 160 | 4.3 |
10 | NHPC-10 | 50KC+30S+20F | 40 | 0.34 | 213 | 128 | 85 | 709 | 1 063 | 145 | 3.41 | 0.043 | 160 | 4.6 |
11 | NHPC-11 | 50KC+30S+20F | 40 | 0.31 | 234 | 140 | 94 | 693 | 1 040 | 145 | 3.74 | 0.047 | 150 | 4.0 |
12 | NHPC-12 | 40C+40S+20F | 40 | 0.31 | 187 | 187 | 94 | 692 | 1 038 | 145 | 3.74 | 0.047 | 150 | 4.2 |
13 | NHPC-13 | 50C+40S+10F | 040 | 0.31 | 234 | 187 | 47 | 698 | 1 046 | 145 | 3.74 | 0.047 | 145 | 4.1 |
表3 各配合比混凝土的工作性能Tab.3 Working performance of concrete with different mix proportion |
编号 | 胶凝材料组成/% | 水胶比 | 坍落度/mm | 1 h坍落度/mm | 拌合物状态 | 凝结时刻 | |
---|---|---|---|---|---|---|---|
初凝 | 终凝 | ||||||
NHPC-1 | 50C+30S+20F | 0.40 | 150 | 115 | 不离析、无泌水 | 7∶40 | 8∶50 |
NHPC-2 | 50C+30S+20F | 0.37 | 75 | - | 不离析、无泌水 | 6∶20 | 7∶40 |
NHPC-3 | 50C+30S+20F | 0.37 | 150 | 110 | 不离析、无泌水 | 7∶20 | 9∶40 |
NHPC-4 | 50C+20S+30F | 0.37 | 160 | 120 | 不离析、无泌水 | 8∶10 | 10∶10 |
NHPC-5 | 50C+40S+10F | 0.37 | 145 | 105 | 偏黏,不离析、无泌水 | 7∶40 | 9∶10 |
NHPC-6 | C100 | 0.34 | 140 | 105 | 不离析、无泌水 | 6∶50 | 8∶20 |
NHPC-7 | KC100 | 0.34 | 150 | 120 | 不离析、无泌水 | 7∶40 | 9∶30 |
NHPC-8 | KC100 | 0.34 | 140 | 110 | 不离析、略有泌水 | 8∶10 | 10∶20 |
NHPC-9 | 50KC+30S+20F | 0.37 | 160 | 115 | 不离析、无泌水 | 8∶20 | 9∶50 |
NHPC-10 | 50KC+30S+20F | 0.34 | 160 | 110 | 不离析、无泌水 | 8∶00 | 9∶30 |
NHPC-11 | 50KC+30S+20F | 0.31 | 150 | 110 | 不离析、无泌水 | 8∶50 | 10∶20 |
NHPC-12 | 40C+40S+20F | 0.31 | 150 | 120 | 偏黏,不离析、无泌水 | 7∶30 | 9∶50 |
NHPC-13 | 50C+40S+10F | 0.31 | 145 | 100 | 偏黏,不离析、无泌水 | 7∶10 | 9∶40 |
表4 各配合比混凝土的力学性能Tab.4 Mechanical properties of concrete with different mix proportion |
编号 | 胶凝材料组成/% | 水胶比 | 不同龄期抗压强度/MPa | |||
---|---|---|---|---|---|---|
7 d | 28 d | 56 d | 90 d | |||
NHPC-1 | 50C+30S+20F | 0.40 | 31.5 | 42.4 | 49.1 | 54.8 |
NHPC-2 | 50C+30S+20F | 0.37 | 30.4 | 40.1 | 48.7 | 54.0 |
NHPC-3 | 50C+30S+20F | 0.37 | 28.9 | 39.2 | 46.5 | 52.7 |
NHPC-4 | 50C+20S+30F | 0.37 | 26.2 | 36.8 | 44.0 | 50.6 |
NHPC-5 | 50C+40S+10F | 0.37 | 29.5 | 40.6 | 48.8 | 53.3 |
NHPC-6 | C100 | 0.34 | 38.2 | 49.5 | 54.8 | - |
NHPC-7 | KC100 | 0.34 | 35.8 | 49.2 | 57.4 | - |
NHPC-8 | KC100 | 0.34 | 40.4 | 52.7 | 59.2 | - |
NHPC-9 | 50KC+30S+20F | 0.37 | 31.9 | 41.5 | 47.6 | 52.8 |
NHPC-10 | 50KC+30S+20F | 0.34 | 35.4 | 46.7 | 53.8 | 59.4 |
NHPC-11 | 50KC+30S+20F | 0.31 | 38.2 | 50.4 | 59.1 | 63.2 |
NHPC-12 | 40C+40S+20F | 0.31 | 39.4 | 52.1 | 62.6 | 67.7 |
NHPC-13 | 50C+40S+10F | 0.31 | 37.9 | 50.1 | 60.8 | 66.2 |
图1 混凝土强度-水胶比关系Fig.1 Relationship between concrete strength and water-binder ratio |
表5 各配合比混凝土的干缩性能Tab.5 Dry shrinkage performance of concrete of each mixture ratio |
编号 | 胶凝材料组成/% | 水胶比 | 含气量/% | 不同龄期干缩率/×10-6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
3 d | 7 d | 14 d | 28 d | 56 d | 90 d | 180 d | ||||
NHPC-1 | 50C+30S+20F | 0.40 | 1.8 | 25 | 75 | 99 | 210 | 221 | 225 | 247 |
NHPC-2 | 50C+30S+20F | 0.37 | 3.9 | 51 | 151 | 251 | 262 | 272 | 276 | 295 |
NHPC-7 | KC100 | 0.34 | 4.4 | 60 | 183 | 262 | 281 | 306 | 322 | 351 |
NHPC-8 | KC100 | 0.34 | 1.9 | 81 | 137 | 212 | 268 | 285 | 297 | 313 |
NHPC-9 | 50KC+30S+20F | 0.37 | 4.3 | 57 | 133 | 197 | 246 | 256 | 269 | 284 |
NHPC-10 | 50KC+30S+20F | 0.34 | 4.6 | 62 | 157 | 228 | 255 | 274 | 284 | 306 |
NHPC-11 | 50KC+30S+20F | 0.31 | 4.0 | 34 | 192 | 253 | 277 | 282 | 293 | 325 |
NHPC-13 | 50C+40S+10F | 0.31 | 4.1 | 66 | 207 | 264 | 283 | 297 | 304 | 335 |
表6 不同胶凝材料配伍水化热结果Tab.6 Hydration heat results of different cementitious materials compatibility |
编号 | 胶凝材料组成/% | 3 d水化热/(J·g-1) | 7 d水化热/(J·g-1) |
---|---|---|---|
C | C100 | 239 | 264 |
KC | KC100 | 232 | 262 |
532C | 50C+30S+20F | 151 | 193 |
442C | 40C+40S+20F | 147 | 184 |
541C | 50C+40S+10F | 159 | 201 |
532KC | 50KC+30S+20F | 161 | 200 |
表7 不同配合比混凝土的抗渗性能Tab.7 Impermeability of concrete with different mix ratios |
编号 | 胶凝材料组成/% | 水胶比 | 渗水压力/MPa | 渗水高度/cm | 抗渗等级 |
---|---|---|---|---|---|
NHPC-3 | 50C+30S+20F | 0.37 | 1.3 | 114 | >W12 |
NHPC-7 | KC100 | 0.34 | 1.3 | 81 | >W12 |
NHPC-8 | KC100 | 0.34 | 1.3 | 92 | >W12 |
NHPC-9 | 50KC+30S+20F | 0.37 | 1.3 | 106 | >W12 |
NHPC-10 | 50KC+30S+20F | 0.34 | 1.3 | 53 | >W12 |
NHPC-11 | 50KC+30S+20F | 0.31 | 1.3 | 47 | >W12 |
NHPC-12 | 40C+40S+20F | 0.31 | 1.3 | 57 | >W12 |
表8 不同配合比混凝土的抗碳化性能Tab.8 Carbonation resistance of concrete of different proportions |
编号 | 胶凝材料组成/% | 水胶比 | 碳化深度/mm | |||
---|---|---|---|---|---|---|
7 d | 14 d | 28 d | 60 d | |||
NHPC-3 | 50C+30S+20F | 0.37 | 10.7 | 14.2 | 16.5 | 18.1 |
NHPC-4 | 50C+20S+30F | 0.37 | 11.6 | 16.7 | 18.6 | 21.9 |
NHPC-5 | 50C+40S+10F | 0.37 | 10.3 | 13.8 | 16.0 | 18.2 |
NHPC-7 | KC100 | 0.34 | 7.6 | 9.4 | 11.2 | 14.6 |
NHPC-8 | KC100 | 0.34 | 7.8 | 10.2 | 12.4 | 15.5 |
NHPC-9 | 50KC+30S+20F | 0.37 | 9.6 | 14.1 | 17.2 | 19.0 |
NHPC-10 | 50KC+30S+20F | 0.34 | 8.1 | 13.4 | 16.2 | 18.4 |
NHPC-11 | 50KC+30S+20F | 0.31 | 6.6 | 9.0 | 11.0 | 14.5 |
NHPC-13 | 50C+40S+10F | 0.31 | 6.3 | 9.1 | 10.8 | 14.2 |
表9 各配合比混凝土的抗冻性能Tab.9 Frost resistance of concrete of each mixture ratio |
编号及胶凝材料组成 | 水胶比 | 含气量/% | 性能/% | 冻融循环次数/次 | ||||
---|---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 250 | ||||
NHPC-2 50C+30S+20F | 0.37 | 3.9 | 相对动弹模 | 99.5 | 96.9 | 89.0 | 84.2 | / |
质量损失 | 0.1 | 0.4 | 1.3 | 2.1 | / | |||
NHPC-3 50C+30S+20F | 0.37 | 4.2 | 相对动弹模 | 98.2 | 97.6 | 91.9 | 85.6 | / |
质量损失 | 0 | 0.2 | 1.0 | 1.9 | / | |||
NHPC-7 KC100 | 0.33 | 4.4 | 相对动弹模 | 99.6 | 98.2 | 93.2 | 89.5 | 83.8 |
质量损失 | 0 | 0.1 | 0.8 | 1.5 | 2.4 | |||
NHPC-11 50KC+30S+20F | 0.31 | 4.0 | 相对动弹模 | 98.8 | 98.0 | 93.8 | 90.0 | 84.1 |
质量损失 | 0 | 0.4 | 0.7 | 1.2 | 2.0 | |||
NHPC-12 40C+40S+20F | 0.31 | 4.2 | 相对动弹模 | 99.2 | 98.1 | 94.8 | 92.0 | 86.6 |
质量损失 | 0 | 0.1 | 0.6 | 1.0 | 1.6 | |||
NHPC-13 50C+40S+10F | 0.31 | 4.1 | 相对动弹模 | 98.8 | 96.6 | 93.4 | 90.7 | 84.9 |
质量损失 | 0 | 0.2 | 0.7 | 1.1 | 1.9 |
图7 各配合比混凝土的抗冻性能(相对动弹模)Fig.7 Frost resistance of concrete of each mixture ratio(relative dynamic mold) |
表10 各配合比混凝土的抗硫酸盐侵蚀性能Tab.10 Sulphate resistance of concrete of each mixture ratio |
编号 | 胶凝材料组成/% | 水胶比 | 抗压强度耐蚀系数/% | |||
---|---|---|---|---|---|---|
60次循环 | 90次循环 | 120次循环 | 150次循环 | |||
NHPC-2 | 50C+30S+20F | 0.37 | - | 84 | 77 | 69 |
NHPC-3 | 50C+30S+20F | 0.37 | - | 87 | 76 | 66 |
NHPC-4 | 50C+20S+30F | 0.37 | - | 80 | 71 | 59 |
NHPC-5 | 50C+40S+10F | 0.37 | - | 90 | 80 | 76 |
NHPC-6 | C100 | 0.34 | 48 | - | - | - |
NHPC-7 | KC100 | 0.34 | 84 | 79 | 68 | - |
NHPC-8 | KC100 | 0.34 | 79 | 62 | - | - |
NHPC-9 | 50KC+30S+20F | 0.37 | - | 90 | 87 | 79 |
NHPC-10 | 50KC+30S+20F | 0.34 | - | 92 | 88 | 80 |
NHPC-11 | 50KC+30S+20F | 0.31 | - | 93 | 93 | 84 |
NHPC-12 | 40C+40S+20F | 0.31 | - | 93 | 90 | 81 |
NHPC-13 | 50C+40S+10F | 0.31 | - | 90 | 83 | 78 |
表11 各配合比混凝土的抗氯离子渗透性能Tab.11 Chloride ion permeability resistance of concrete of each mixture ratio |
编号 | 胶凝材料组成/% | 水胶比 | 氯离子扩散系数(RCM法)/×10-12(m2·s-1) | 电通量/C | ||
---|---|---|---|---|---|---|
56 d | 84 d | 56 d | 84 d | |||
NHPC-2 | 50C+30S+20F | 0.37 | 3.7 | 2.8 | 841 | 529 |
NHPC-3 | 50C+30S+20F | 0.37 | 3.3 | 2.3 | 809 | 538 |
NHPC-4 | 50C+20S+30F | 0.37 | 4.0 | 3.2 | 912 | 746 |
NHPC-5 | 50C+40S+10F | 0.37 | 3.6 | 2.8 | 836 | 493 |
NHPC-6 | C100 | 0.34 | 4.5 | 3.6 | 1 173 | 1 018 |
NHPC-7 | KC100 | 0.34 | 4.3 | 3.4 | 1 159 | 1 046 |
NHPC-8 | KC100 | 0.34 | 5.2 | 3.9 | 1 403 | 1 294 |
NHPC-9 | 50KC+30S+20F | 0.37 | 3.1 | 2.2 | 781 | 629 |
NHPC-10 | 50KC+30S+20F | 0.34 | 2.8 | 1.6 | 734 | 608 |
NHPC-11 | 50KC+30S+20F | 0.31 | 2.5 | 1.2 | 672 | 549 |
NHPC-12 | 40C+40S+20F | 0.31 | 2.0 | 0.9 | 608 | 384 |
NHPC-13 | 50C+40S+10F | 0.31 | 2.2 | 1.2 | 695 | 476 |
1 |
黄河勘测规划设计有限公司.盐环定扬黄共用工程一至七泵站更新改造初步设计报告[R].2016,6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
田树民. 干湿环境下混凝土抗硫酸盐腐蚀性能试验研究[D].兰州:兰州交通大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
郭飞. 西部盐渍土地区混凝土耐久性试验研究及寿命预测[D].兰州:兰州理工大学,2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
苏志欣,杨玉霞.某电厂桩基防腐研究成果及运用[J].武汉大学学报(工学版),2017():138-143.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
许远荣,向安乐,舒佳明,许国林.高强高性能预制桩混凝土耐久性的试验研究[J].混凝土与水泥制品,2016(11):32-35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
聂庆科,白冰,李华伟,等.粉煤灰和矿粉含量对混凝土抗硫酸盐腐蚀影响的试验研究[J].混凝土,2015(7):1-3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
《水工混凝土试验规程( SL 352-2006)》[S].北京:中国水利水电出版社,2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
《水工混凝土结构设计规范( DL/T 5057-2009)》[S].北京:中国电力出版社,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
《普通混凝土长期性能和耐久性能试验方法标准( GB/T 50082-2009)》[S].北京:中国建筑工业出版社,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
《水工混凝土耐久性技术规范( DL/T 5241-2010)》[S].北京:中国电力出版社,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
《混凝土耐久性检验评定标准( JGJ/T 193-2009)》[S].北京:中国建筑工业出版社,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
《铁路混凝土结构耐久性设计规范( TB10005-2010)》[S].北京:铁道出版社,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |