
城市河流蜿蜒度变化对河流生态环境影响的量化研究
于子铖, 赵进勇, 王琦, 张晶, 彭文启, 韩会玲
城市河流蜿蜒度变化对河流生态环境影响的量化研究
Quantitative Research on the Impact of Urban River Meandering Change on the River Ecological Environment
为进一步明确城市河流蜿蜒度变化对河流生态环境的影响,基于研究区域现状,从生物栖息地与河流水质两个方面入手,选取有效栖息地面积(WUA)与深潭浅滩变化、化学需氧量(COD)和总磷(TP)作为特征性指标,选择北京市南沙河老牛湾附近河段作为研究对象,通过梳理相关资料、现场调查等方式获取基本数据,以基础散点数据构建所选河段的不同平面蜿蜒程度,利用MIKE21和RIVER2D分别对其进行水动力水质模拟,根据模拟结果中鱼类有效栖息地面积与所选控制断面的水质变化进行分析,从而将河流平面蜿蜒形态变化对河流生态环境的影响进行量化研究。结果表明,随着河流蜿蜒度的变小,目标鱼类栖息地面积与深潭浅滩个数逐渐减少,WUA由占河道总面积的28.9%降至11.2%,深潭浅滩个数由10减少至4;河流水质也逐渐变差,COD与TP浓度都呈整体上升趋势。最终明确了河流生态环境会随着蜿蜒度的变小而发生恶化。
In order to further clarify the impact of changes in the meandering of urban rivers on the ecological environment of the river, this paper, based on the current situation of the study area, starts with two aspects of biological habitat and river water quality, and selects effective habitat area (WUA), pool and riffle, chemical demand oxygen content (COD) and total phosphorus (TP) are used as characteristic indicators, and the river section near Laoniu Bay of Nansha River in Beijing is selected as the research object. The basic data is obtained by combining relevant data with field surveys. The different plane meandering degrees of the selected river sections are simulated by using MIKE21 and RIVER2D. According to the simulation results, the effective fish habitat area and the water quality changes of the selected control section are analyzed so as to meander the river plane. The influence of serpentine morphology changes on the river ecological environment is quantitatively studied. The results show that as the meandering of the river becomes smaller, the target fish habitat area and the number of deep pools and shoals gradually decrease. WUA accounts for 28.9% of the total river area to 11.2%, and the number of deep pools and shoals decreases from 10 to 4. River water quality is gradually getting worse, and both COD and TP show an overall upward trend. Finally, it is clear that the ecological environment of the river will deteriorate as the meandering becomes smaller.
蜿蜒度 / 栖息地 / 水质 / 量化 {{custom_keyword}} /
sinuosity / habitat / water quality / quantification {{custom_keyword}} /
表1 断面1~6模拟与设计水位Tab.1 Section 1~6 simulation and design water level |
断面名称 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
MIKE21模拟水位/m | 38.50 | 38.43 | 38.28 | 38.15 | 38.03 | 37.96 |
RIVER2D模拟水位/m | 38.55 | 38.43 | 38.20 | 38.08 | 37.96 | 37.92 |
设计水位(已批复清淤工程)/m | 38.45 | 38.40 | 38.40 | 38.39 | 38.36 | 38.28 |
MIKE21相对误差/% | 0.13 | 0.08 | 0.3 | 0.6 | 0.8 | 0.8 |
RIVER2D相对误差/% | 0.26 | 0.08 | 0.52 | 0.80 | 1.05 | 0.98 |
图7 不同蜿蜒度下A-A断面COD浓度变化Fig.7 Changes of COD concentration in A-A section under different sinuosity |
图8 不同蜿蜒度下A-A断面TP浓度变化Fig.8 Changes of TP concentration in A-A section under different sinuosity |
图9 不同蜿蜒度下B-B断面COD浓度变化Fig.9 Changes of COD concentration in B-B section under different sinuosity |
表2 不同蜿蜒度下有效栖息地面积占比结果统计Tab.2 Statistics on the results of the proportion of effective habitats in different sinuosity |
蜿蜒度 | WUA | TA | WUA占比/% |
---|---|---|---|
平均值 | 21.25 | ||
1.89 | 120 726 | 418 290 | 28.9 |
1.50 | 97 282 | 374 540 | 25.9 |
1.40 | 79 515 | 338 669 | 22.5 |
1.30 | 69 580 | 324 232 | 21.5 |
1.21 | 57 522 | 341 921 | 17.5 |
1.02 | 36 663 | 325 656 | 11.2 |
表3 深潭浅滩统计Tab.3 Statistics of pool and riffle |
蜿蜒度 | 标准差SD | 深潭个数 | 浅滩个数 | 深潭所在断面 | 浅滩所在断面 |
---|---|---|---|---|---|
1.89 | 1.154 | 5 | 5 | 2、4、6、9、11 | 1、3、5、7、10 |
1.02 | 0.310 | 2 | 2 | 2、6 | 1、5 |
1 |
董哲仁.河流生态系统研究的理论框架[J].水利学报,2009,40(2):129-137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
许凤冉,刘德杰,白音包力皋.山区城市河流综合治理模式及案例探讨[J].中国水利水电科学研究院学报,2016,14(4):274-279.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
庄需印,刘冬杰,宋斌.城市河流现行治理存在的问题及生态修复技术初探[J].亚热带水土保持,2013,25(2):67-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
赵进勇,孙东亚,董哲仁,等.浙江孝顺溪河流地貌多样性修复设计探讨[C]//中国水利学会青年科技工作委员会.中国水利学会第四届青年科技论坛论文集.中国水利学会青年科技工作委员会:中国水利学会,2008:8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王随继,任明达.根据河道形态和沉积物特征的河流新分类[J].沉积学报,1999(2):75-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
董哲仁,孙东亚,赵进勇,等.河流生态修复[M].北京:中国水利水电出版社,2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
张亮.城市河流形态与河流自净能力的关系[C]//中国生态学会青年工作委员会.第五届中国青年生态学工作者学术研讨会论文集.中国生态学会青年工作委员会:广东省科学技术协会科技交流部,2008:87-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
何嘉辉,潘伟斌,刘方照.河流线型对河流自净能力的影响[J].环境保护科学,2015,41(2):43-47,113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
孙然好,程先,陈利顶.海河流域河流生境功能识别及区域差异[J].生态学报,2018,38(12):4 473-4 481.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
许婷.MIKE21 HD计算原理及应用实例[J].港工技术,2010,47(5):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
闫文龙.汉江汉中平川段鱼类生境特征及模拟研究[D].西安:西安理工大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
王宏涛.蜿蜒型河流空间异质性和物种多样性相关关系研究[D].北京:中国水利水电科学研究院,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
蒋天宝,刘利平,高晓阳,等.日本鳗鲡人工繁育研究的进展[J].水产科技情报,2011,38(3):121-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
王武.特种水产品养殖新技术[M].北京:中国农业出版社,1996.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
刘静.盐度对鲤鱼繁殖及相关指标的影响[D].大连海洋大学,2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
朱元宗,孙婷亭,刘红凡,等.节约型园林在城市人工湖管理中的应用:以洛阳市开元湖音乐喷泉水质改善为例[J].中国园艺文摘,2013,29(4):87-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
毛建春.鲤鱼的繁育技术[J].黑龙江水产,2009(6):6-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘海晶,王彬彬.鲤鱼人工繁殖技术[J].吉林农业,2011(6):269.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
郝生凡.鲤鱼的人工繁殖[J].养殖技术顾问,2012(7):259.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
李倩,吕平毓,彭期冬,等.基于深潭浅滩分布的长江上游保护区铜鱼产卵场地形分析[J].四川大学学报(工程科学版),2012,44():273-278.
增刊2
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
张辉,危起伟,杜浩,等.长江上游干流基于河床地形的深潭浅滩识别方法比较研究[J].淡水渔业,2011,41(1):3-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |