
城市生活垃圾填埋场污染物运移研究
王松涛, 杨霄, 王丛, 贾超, 王辉辉, 刘建章
城市生活垃圾填埋场污染物运移研究
Research on the Transport of Pollutants in Municipal Solid Waste Landfill
长期运行的垃圾填埋场存在防渗措施失效的问题,渗滤液泄漏造成的地下水污染将严重威胁人类的健康。以山东省某垃圾填埋场为研究对象,以现场调查数据和长期地下水观测井为数据源,基于GIS平台并结合MODFLOW和MT3DMS程序包建立了该垃圾填埋场区域地下水流场和溶质运移数值模型。以氨氮和硝酸盐作为模拟因子,预测垃圾填埋场注浆前后十五年内渗滤液污染物的迁移情况。结果表明:注浆前,氨氮最大超标范围为1 929.61 m,硝酸盐最大超标范围为1 613.14 m。垃圾填埋场附近的污染物浓度持续保持较高的水平,会对周边地下水环境造成比较严重的影响。注浆后,氨氮最大超标范围为705.75 m,硝酸盐最大超标范围为498.34 m。注浆后的风险源被堵住,污染通道被切断,污染源得到控制住,下游污染浓度逐渐下降。该研究可为渗滤液污染地下水的防治提供理论和实际的参考。
The long-term operation of landfill site has the problem of failure of anti-seepage measures. The groundwater pollution caused by leachate leakage will threaten human health seriously. A landfill site in Shandong Province is taken as the research object, and the field survey data and long-term groundwater observation well are used as data sources. Based on the GIS platform, combined with the MODFLOW and MT3DMS program package, a numerical model of the groundwater flow field and solute transport in the study area was established. Ammonia nitrogen and nitrate were selected as simulation factors to predict the migration of leachate pollutants within 15 years before and after grouting. The results showed that the maximum range of ammonia nitrogen and nitrate exceeding the standard before grouting was 1 929.61 and 1 613.14 m respectively. The concentration of pollutants near the landfill site is kept at a high level, which will have a serious impact on the surrounding groundwater environment. The maximum range of ammonia nitrogen and nitrate exceeding the standard after grouting was 705.75 and 498.34 m respectively. After grouting, the risk source was blocked and the pollution channel was cut off. Therefore, the pollution source was controlled and the downstream pollution concentration gradually decreased. This study can provide a theoretical and practical reference for the prevention and control of groundwater pollution by leachate.
垃圾填埋场 / 污染物运移 / 数值模拟 / 污染防治 {{custom_keyword}} /
landfill / pollutant transport / numerical simulation / pollution prevention and control {{custom_keyword}} /
表1 模型各层水文地质参数Tab.1 Hydrogeological parameters of each layer in the model |
层位 | 渗透系数/(m·d-1) | 贮水率 | 给水度 | 孔隙度 |
---|---|---|---|---|
上层含水层 | 4.40 | 0.15 | 0.12~0.25 | 0.23 |
中层弱透水层 | 0.020 0 | 0.002 5 | 0.002 5 | 0.020 0 |
下层含水层 | 0.670 | 0.005 | 0.100 | 0.260 |
图4 注浆前氨氮在地下水中污染运移范围Fig.4 Migration range of ammonia nitrogen in groundwater before grouting |
表2 注浆前各污染因子随时间的变化规律 (m)Tab.2 Variation law of pollution factors with time before grouting |
年份 | 氨氮超标范围 | 硝酸盐超标范围 | 氨氮最大影响范围 | 硝酸盐最大影响范围 |
---|---|---|---|---|
2020 | 697.47 | 580.78 | 785.04 | 632.31 |
2025 | 1 101.51 | 698.67 | 1 338.94 | 894.04 |
2030 | 1 619.39 | 905.40 | 1 951.78 | 1 542.01 |
2035 | 1 929.61 | 1 613.14 | 2 349.15 | 1 760.28 |
图6 注浆后氨氮在地下水中污染运移范围Fig.6 Migration range of ammonia nitrogen in groundwater after grouting |
表3 注浆后各污染因子随时间的变化规律 (m)Tab.3 Variation law of pollution factors with time after grouting |
年份 | 氨氮超标范围 | 硝酸盐超标范围 | 氨氮最大影响范围 | 硝酸盐最大影响范围 |
---|---|---|---|---|
2020 | 400.57 | 358.10 | 500.61 | 418.18 |
2025 | 537.18 | 460.93 | 645.78 | 487.70 |
2030 | 626.35 | 471.15 | 702.39 | 575.13 |
2035 | 705.75 | 498.34 | 885.28 | 705.54 |
1 |
李磊,袁光钰. 中国城市生活垃圾处理现状及展望[J]. 世界环境,2017(6):24-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
周文武,陈冠益,穷达卓玛,等. 拉萨垃圾填埋场地下水环境质量影响分析研究[J]. 环境监测管理与技术,2020,32(4):20-23,51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王力功,王健. 垃圾渗滤液处理技术发展现状及应用[J]. 煤炭科学技术,2017,45():55-58.
增刊2
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
穷达卓玛,汪晶,周文武,等. 拉萨垃圾填埋场渗滤液处理站周边土壤重金属含量分析及评价[J]. 环境化学,2020,39(5):1 404-1 409.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
姜凤成,李义连,杨国栋,等. 某化工场地地下水中污染物运移模拟研究[J]. 安全与环境工程,2017,24(2):8-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
李阳坤,于福荣,孙剑,等. 灰渣填埋场地下水中典型污染物迁移数值模拟[J]. 人民长江,2020,51(11):46-52,166.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
薛丹,唐晓声,李海建. 地下水的污染与修复[J]. 环境与发展,2017,29(10):71-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
彭盼盼,黄凯,伍靖伟. 地下水重金属铬污染试验观测与预测分析[J]. 中国农村水利水电,2018(5):95-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王喆,卢丽,夏日元. 基于GMS的北京西郊垃圾场地下水溶质运移模拟[J]. 人民黄河,2012,34(11):85-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李巍,卢玉东,卢阳春,等. 基于Visual Modflow的山区某再生铜地下水污染模拟[J]. 中国农村水利水电,2019(3):28-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
孙从军,韩振波,赵振,等. 地下水数值模拟的研究与应用进展[J]. 环境工程,2013,31(5):9-13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
赵贝,刘建军. 基于Visual Modflow地下水污染物溶质运移的模拟[J]. 石河子大学学报(自然科学版),2015,33(6):787-792.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
赵春兰,凌成鹏,吴勇,等. 垃圾渗滤液对地下水水质影响的数值模拟预测:以冕宁县漫水湾生活垃圾填埋场为例[J]. 环境工程,2017,35(2):163-167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
马建花,曾润强,边世强,等. 基于Visual Modflow的河流阶地灌溉区地下水模拟分析:以黑台为例[J]. 兰州大学学报(自然科学版),2020,56(5):580-586.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
廖镭,张涵,郭珊珊. 简易垃圾填埋场渗滤液地下水溶质运移数值模拟[J]. 安全与环境工程,2019,26(2):76-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
郑佳. 北京西郊垃圾填埋场对地下水污染的预测与控制研究[D]. 北京:中国地质大学(北京),2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
赵群英,赵炎. 垃圾填埋场渗滤液水质演变特性分析[J]. 西安工业大学学报,2013(10):809-813.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |