
生物炭改良土壤对初期雨水径流污染物去除实验研究
薛英文, 吴铭轩, 肖云龙, 胡晓兰
生物炭改良土壤对初期雨水径流污染物去除实验研究
Research on the Pollutant Removal from Initial Storm Water Runoff Treated with Improved Soil by Biochar
以450 ℃下热解棉花杆制备的生物炭作为土壤改良剂,设计了生物炭、河砂、黏土3种材料完全混合、砂土混合-炭分层、完全分层3种情况对土壤的改良方案,通过模型实验,研究了改良土层渗透系数,以及对模拟初期雨水径流中浊度、CODCr、NH4 +-N(氨氮)、TP(总磷)的去除效果,研究表明完全混合方案的渗透系数,对浊度以及CODCr的去除效果高于其他两种方案,对NH4 +-N和TP去除率与砂土混合-炭分层方案接近。研究了完全混合方案下3种介质不同体积比对改良土壤性质的影响,研究表明河砂与生物炭的体积比增加会增大改良土的渗透系数。当河砂∶黏土∶生物炭体积比为2∶2∶1时,改良土壤对雨水中浊度、NH4 +-N及TP的去除效果最好,CODCr去除效果仅次于河砂∶黏土∶生物炭体积比为1∶1∶1改良土壤。进一步通过在改良土壤种植草皮实验表明,草皮种植会降低改良土壤的渗透系数,可以较好地保护土壤结构,提高浊度去除率,同时能提高改良土壤对CODCr、NH4 +-N以及TP的去除稳定性,延长改良土壤的使用寿命。因此生物炭改良土壤可以有效控制城市道路雨水径流所造成的面源污染,是解决初期雨水污染问题较为有效的解决方案。
The soil which can be used in sponge city is improved by cotton stalk biochar prepared in 450 ℃. Three kinds of materials (biochar, sand and clay) are mixed in three models (fully mixing of biochar, sand and clay; mixing of clay and sand with layered biochar; layering biochar, sand and clay). The research conclusion shows that the osmotic coefficient increases with the increase in volume ratio of sand and biochar. In different fully mixing of biochar, sand and clay models, the best removal effect of turbidity, ammonia nitrogen and total phosphorus in storm water runoff is obtained when the volume ratio of sand to clay to biochar is 2∶2∶1. The removal effect of 2∶2∶1 model on CODCr is lower than the 1∶1∶1 model. Furthermore, the research results of planting grass on the improved soil shows that the grass reduces the osmotic coefficient of improved soil, protects the structure of soil, has a positive effect of reducing turbidity, improve the removal stability of CODCr, ammonia nitrogen and total phosphorus and extends life cycle of improved soil. The effective solution of initial storm water runoff pollution is planting grass on the soil improved by biochar, which can control the non-point source pollution effectively caused by urban road storm water runoff.
初期雨水径流 / 生物炭改良土壤 / 海绵城市 / 渗透系数 / 面源污染 {{custom_keyword}} /
initial storm water runoff / soil improved by biochar / sponge city / osmotic coefficient / non-point source pollution {{custom_keyword}} /
表1 实验各组材料占比与混合方式表Tab.1 Material proportion and mixing mode of each experimental group |
组号 | 河砂体积占比/% | 黏土体积占比/% | 生物炭体积占比/% | 混合方式 |
---|---|---|---|---|
A组 | 40 | 40 | 20 | 黏土、河砂、生物炭完全混合(I型) |
B组 | 40 | 40 | 20 | 黏土与河砂混合+生物炭(II型) |
C组 | 40 | 40 | 20 | 黏土+生物炭+河砂完全分层(III型) |
表2 水平流速与渗透系统统计表Tab.2 Horizontal flow rate and osmotic system statistics |
组号 | 水平流速/(mm·s-1) | 平均渗透系数/(mm·h-1) |
---|---|---|
A组 | 0.33 | 92.6 |
B组 | 0.23 | 52.8 |
C组 | 0.18 | 25.1 |
表3 三种介质占比情况表 (%)Tab.3 Material proportion and mixing mode of each experimental group |
组号 | 河砂体积占比 | 黏土体积占比 | 生物炭体积占比 |
---|---|---|---|
A组 | 40 | 40 | 20 |
D组 | 33.4 | 33.3 | 33.3 |
E组 | 50 | 25 | 25 |
F组 | 60 | 20 | 20 |
表4 生物炭改良土水平流速与平均渗透系数统计表Tab.4 Permeability coefficient of biochar improved soil |
组号 | 介质体积比 | 水平流速/(mm·s-1) | 平均渗透系数/(mm·h-1) |
---|---|---|---|
A组 | 河砂∶黏土∶生物炭=2∶2∶1 | 0.33 | 92.60 |
D组 | 河砂∶黏土∶生物炭=1∶1∶1 | 0.37 | 133.33 |
E组 | 河砂∶黏土∶生物炭=2∶1∶1 | 0.42 | 263.35 |
F组 | 河砂∶黏土∶生物炭=3∶1∶1 | 0.83 | 366.67 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
倪艳芳. 城市面源污染的特征及其控制的研究进展[J].环境科学与管理,2008,33(2):53-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
邓志光,吴宗义,蒋卫列. 城市初期雨水的处理技术路线初探[J].中国给排水,2009(10):11-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陈 钢. 海绵城市理念在城市规划的应用与建议[J].建筑工程技术与设计,2020(24):29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
蒋旭涛. 生物炭对水中氨氮和磷酸盐吸附性能研究[D].天津:天津大学,2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
沈君. 武汉市屋面雨水水质特性分析[D].武汉:武汉理工大学,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
何庆慈, 李立青, 孔玲莉, 等. 武汉市汉阳区的暴雨径流污染特征[J].中国给水排水,2005,21(2):101-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
彭亮. 武汉市白砂洲大道雨水径流水质特征及污染物指标相关性分析[D].武汉:武汉科技大学,2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
程涛. 城市雨水资源化技术应用研究[D].武汉:武汉理工大学,2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
潘璐. 武汉典型校区降雨径流污染特征及污染负荷研究[D].武汉:湖北工业大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
赵昕. 水力学[M].北京:中国电力出版社,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
国家环境保护局科技标准司标准处. 水质浊度的测定:GB 13200-91 [S].北京:国家环境保护总局,1992.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
国家环境保护总局科技标准司. 水质化学需氧量的测定快速消解分光光度法:HJ/T 399-2007 [S].北京:中国环境科学出版社,2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
环境保护部. 水质氨氮的测定纳氏试剂分光光度法:HJ 535-2009 [S].北京:中国环境科学出版社,2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
国家环境保护局标准处. 水质总磷的测定钼酸铵分光光度法:GB 11893-89 [S].北京:中国标准出版社,1989.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
SUMARAj,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
李际会.改性生物炭吸附硝酸盐和磷酸盐研究[D].北京:中国农业科学院,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
朱国胜,张家发,陈劲松, 等. 宽级配粗粒土渗透试验尺寸效应及边壁效应研究[J].岩土力学,2012,33(9):2 569-2 574.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
武汉市国土资源和规划局. 武汉市中心城区排水防涝专项规划规划(2012-2030)[EB].[2020-12-25].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |