
水资源需求重大改变后的效能保障策略研究
郭建斌, 梁翔, 杨沾
水资源需求重大改变后的效能保障策略研究
Research on the Effectiveness Assurance Strategies after Major Changes in Water Resources Demand
随着城镇化民生用水需求迅速增加,水库调度面临巨大的挑战,兼顾民生与发电用水需求的调度策略成为保障工程高效运行的重要软技术手段。通过NSGA-Ⅱ算法建立水库运行的多目标优化调度模型,开展水库需求改变后的调度策略研究,并以缺水度衡量水库调度策略的优劣。按照综合最优目标, 在优先保障民生用水的前提下,运行调度策略不仅可以增加发电量,还可以减少用水需求重大改变后对自然水资源的依赖,提高水库效能利用水平,达到提升整体工程经济效益的研究目标。
With the rapid increase in the demand for water,for urbanization and people’s livelihood, reservoir dispatch is facing huge challenges. The dispatch strategy that takes into account the people’s livelihood and the demand for power generation water has become an important soft technical means to ensure the efficient operation of the project. The NSGA-Ⅱ algorithm is used to establish a multi-objective optimal scheduling model for reservoir operation, to carry out research on the scheduling strategy after the demand of the reservoir changes, and to measure the pros and cons of the reservoir scheduling strategy by the level of water shortage. According to the comprehensive optimal goal, under the premise of giving priority to the protection of people’s livelihood water, the operation scheduling strategy can not only increase the power generation, but also reduce the dependence on natural water resources after major changes in water demand, and improve the efficiency and utilization of the reservoir to achieve the research goal of improving the economic benefits of the overall project.
水库调度策略 / 多目标优化调度 / 水资源高效利用 / NSGA-Ⅱ算法 / 发电效能 {{custom_keyword}} /
reservoir operation strategy / multi-objective optimal operation / efficient utilization of water resources / NSGA - Ⅱ / power generation efficiency {{custom_keyword}} /
表1 典型调度周期入库流量表Tab.1 Inbound flow meter for typical dispatch period |
时间 | 05-03 | 05-04 | 05-05 | 05-06 | 05-07 | 05-08 | 05-09 | 05-10 | 05-11 | 05-12 | 06-01 | 06-02 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
入库流量/(m3·s-1) | 23.3 | 44.8 | 85.4 | 94.9 | 32.7 | 27.1 | 13.1 | 8.07 | 10.0 | 3.73 | 5.56 | 10.2 |
出库流量/(m3·s-1) | 21.9 | 17.4 | 37 | 66.6 | 50.8 | 27.3 | 34.2 | 17.5 | 9.4 | 14.5 | 18.7 | 10.5 |
水位/m | 202.81 | 204.56 | 207.92 | 210.36 | 211.22 | 210.05 | 209.45 | 207.9 | 207.43 | 207.02 | 205.39 | 205.05 |
时间 | 06-03 | 06-04 | 06-05 | 06-06 | 06-07 | 06-08 | 06-09 | 06-10 | 06-11 | 06-12 | 07-01 | 07-02 |
入库流量/(m3·s-1) | 25.0 | 41.4 | 44.8 | 57.7 | 55.2 | 60.3 | 34.5 | 36.4 | 12.8 | 5.18 | 4.35 | 14.4 |
出库流量/(m3·s-1) | 60.3 | 34.5 | 36.4 | 12.8 | 5.18 | 4.35 | 14.4 | 43.6 | 45.6 | 40.1 | 42.3 | 37.2 |
水位/m | 204.64 | 205.01 | 205.3 | 207.89 | 208.94 | 210.2 | 208.64 | 206.49 | 205.48 | 206.43 | 206.96 | 207.08 |
时间 | 07-03 | 07-04 | 07-05 | 07-06 | 07-07 | 07-08 | 07-09 | 07-10 | 07-11 | 07-12 | 08-01 | |
入库流量/(m3·s-1) | 36.1 | 37.1 | 37.1 | 60.6 | 28.3 | 25.0 | 21.0 | 8.47 | 6.60 | 5.15 | 5.84 | |
出库流量/(m3·s-1) | 43.6 | 45.6 | 40.1 | 42.3 | 37.2 | 23.7 | 25.5 | 24.70 | 8.42 | 12.80 | 16.70 | |
水位/m | 206.02 | 205.74 | 204.87 | 205.92 | 206.57 | 205.28 | 205.63 | 204.44 | 203.44 | 202.85 | 201.83 |
表2 最优调度策略相关数据Tab.2 Related data of optimal scheduling strategy |
策略 | WS_D | E/GWh | |
---|---|---|---|
Ⅰ | 14.94 | 709.87 | 1.38 |
Ⅱ | 15.07 | 709.99 | 1.69 |
Ⅲ | 15.22 | 710.11 | 2.25 |
Ⅳ | 15.33 | 710.21 | 2.97 |
图5 逐月民生缺水度对比图Fig.5 Comparison of the water shortage of the people's livelihood by month |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
纪昌明,蒋志强,孙平,等.水库常规调度图逆推计算问题分析[J].中国农村水利水电,2014(2):128-132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王渤权.改进遗传算法及水库群优化调度研究[D].华北电力大学(北京),2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
邓志诚,孙辉,赵嘉,等.基于聚集度自适应反向学习粒子群算法在水库优化调度中的应用[J].水利水电技术,2020,51(4):166-174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
史利杰,苏律文,杨侃.基于改进多目标蝙蝠算法的洛河流域水库优化调度[J].水电能源科学,2020,38(8):55-58,82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王学斌,畅建霞,孟雪姣.基于改进NSGA-Ⅱ的黄河下游水库多目标调度研究[J].水利学报,2017,48(2):135-145,156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
方国华,丁紫玉,黄显峰,等.考虑河流生态保护的水电站水库优化调度研究[J].水力发电学报,2018,37(7):1-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
黄草,王忠静,李书飞,等.长江上游水库群多目标优化调度模型及应用研究Ⅰ:模型原理及求解[J]. 水利学报, 2014(9): 1 009-1 018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
王丽萍,阎晓冉,马皓宇,等.基于结构方程模型的水库多目标互馈关系研究[J].水力发电学报, 2019,38(10):49-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
高新潮.锦绣川水库多目标供水优化调度及预警研究[D].济南:济南大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
戴凌全,王煜,蒋定国,等.基于NSGA-Ⅱ方法的三峡水库汛末蓄水期多目标生态调度研究[J].水利水电技术,2017,48(1):122-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
王煜,彭少明,武见.黄河流域水资源均衡调控理论与模型研究[J].水利学报,2020,51(1):44-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
吴梦烟,杨侃,吴云,等.基于改进烟花算法的汾河水库优化调度模型研究[J].水电能源科学,2020,38(5):71-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |